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Abstract. Dams and reservoirs are among the most widespread human-made infrastructure on Earth. Despite their societal 

and environmental significance, spatial inventories of dams and reservoirs, even for the large ones, are insufficient. A 

dilemma of the existing georeferenced dam datasets is the polarized focus on either dam quantity and spatial coverage (e.g., 

GOODD) or detailed attributes for a limited dam quantity or region (e.g., GRanD and national inventories). One of the most 

comprehensive datasets, the World Register of Dams (WRD) maintained by the International Commission on Large Dams 20 

(ICOLD), documents nearly 60,000 dams with an extensive suite of attributes. Unfortunately, WRD records are not 

georeferenced, limiting the benefits of their attributes for spatially explicit applications. To bridge the gap between attribute 

accessibility and spatial explicitness, we introduce the Georeferenced global Dam And Reservoir (GeoDAR) dataset, created 

by utilizing online geocoding API and multi-source inventories. We release GeoDAR in two successive versions (v1.0 and 

v1.1) at https://doi.org/10.6084/m9.figshare.13670527. GeoDAR v1.0 holds 21,051 dam points georeferenced from WRD, 25 

whereas v1.1 consists of a) 23,680 dam points after a careful harmonization between GeoDAR v1.0 and GRanD and b) 

20,214 reservoir polygons retrieved from high-resolution water masks. Due to geocoding challenges, GeoDAR spatially 

resolved 40% of the records in WRD which, however, comprise over 90% of the total reservoir area, catchment area, and 

reservoir storage capacity. GeoDAR does not release the proprietary WRD attributes, but upon individual user requests we 

can assist in associating GeoDAR spatial features with the WRD attribute information that users have acquired from ICOLD. 30 

With a dam quantity triple that of GRanD, GeoDAR significantly enhances the spatial details of smaller but more 

widespread dams and reservoirs, and complements other existing global dam inventories. Along with its extended attribute 

accessibility, GeoDAR is expected to benefit a broad range of applications in hydrologic modelling, water resource 

management, ecosystem health, and energy planning.  
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1 Introduction 35 

Since around the 1950s, the world has seen an unprecedented boom in large dam construction as a response to the ever-

growing human demands for water and energy (Chao et al., 2008; Wada et al., 2017). Today, dams and their impounded 

reservoirs are ubiquitous across many global basins, providing multiple services that range from hydropower and flood 

control to water supply and navigation (Belletti et al., 2020; Biemans et al., 2011; Boulange et al., 2021; Doll et al., 2009; 

Grill et al., 2019). These benefits were, however, often gained at the costs of fragmenting river systems, submerging arable 40 

lands, displacing population, and disturbing climate regimes (Carpenter et al., 2011; Cretaux et al., 2015; Degu et al., 2011; 

Grill et al., 2019; Latrubesse et al., 2017; Nilsson and Berggren, 2000; Tilt et al., 2009; Vorosmarty et al., 2003; Wang et al., 

2017). 

Despite such environmental and societal significance, our spatial inventory of global dams and reservoirs, even for the large 

ones (such as those with a surface area >1 km2), has been insufficient. We still lack a thorough and authoritative dataset that 45 

documents both geographic coordinates (latitude and longitude) and standard attributes (e.g., purpose, reservoir storage 

capacity, and hydropower capacity) of the existing large dams. One of the most comprehensive datasets, the World Register 

of Dams (WRD), is regularly updated by the International Commission on Large Dams (ICOLD; https://www.icold-

cigb.org), a non-governmental organization dedicated to the global sharing of professional dam/reservoir information. The 

recent version of ICOLD WRD documents nearly 60,000 “large” dams, defined as those with a wall higher than 15 m or 50 

between 5 to 15 m but with a reservoir storage greater than 3 million m3 (mcm). These WRD records are considered to be 

“complete” to the extent of contributions from willing nations and water authorities (Wada et al., 2017).  

While ICOLD WRD provides more than 40 attributes, the dam locations are, unfortunately, either not georeferenced or 

inaccessible. Despite the availability of many essential attributes, missing geographic coordinates has severely limited the 

applications of WRD, including for hydrological modelling and hydropower planning (Yassin et al., 2019) which require the 55 

dam records to be spatially explicit. This dilemma may be partially resolved by using georeferenced regional registers such 

as the United States National Inventory of Dams (US NID; https://nid.sec.usace.army.mil) and from the Canadian Dam 

Association (https://www.cda.ca). Nevertheless, such regional registers are not always publicly available, especially in 

developing nations where dam construction is still booming (Zarfl et al., 2015). 

Other global dam and reservoir datasets that are georeferenced, however, often lack essential attributes. An example is the 60 

recently published GlObal geOreferenced Database of Dams (GOODD V1) (Mulligan et al., 2020), which contains 38,667 

dam points digitized from Google Earth imagery and their associated catchments delineated from digital elevation models 

(DEMs). Despite this dam quantity, GOODD provides no other attribute information. Another inventory, the Global River 

Obstruction Database (GROD) (Kornei, 2020; Whittemore et al., 2020), located more than 35,000 flow obstructions along 

rivers wider than 30 m as mapped in the Global River Width from Landsat (GRWL) database (Allen and Pavelsky, 2018). 65 
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The current attributes are limited to obstruction types such as locks, weirs, and multiple types of dams. In addition, GROD is 

tailored for the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission which is designed to observe 

river reaches wider than 50–100 m (Biancamaria et al., 2016). While these rivers are sufficiently captured by GRWL, the 

obstruction infrastructure identified along the river mask in GRWL excludes many large dams on rivers narrower than 30 m. 

In the US, for instance, there are at least 5170 NID-registered dams higher than 15 m (i.e., large dams according to ICOLD 70 

criteria), but less than 8% of these dams intersect with GRWL (i.e., located on rivers wider than 30 m). 

Among the few global dam/reservoir datasets that provide both georeferenced locations and essential attributes, are the 

United Nations Food and Agricultural Organization (FAO) AQUASTAT (Li et al., 2011) and the Global Reservoir and Dam 

database (GRanD) (Lehner et al., 2011). GRanD was constructed by harmonizing AQUASTAT and a wide range of regional 

gazetteers and inventories. Its latest version, v1.3, contains 7320 dams as well as their reservoir boundaries and 75 

approximately 50 attributes, with a cumulative storage capacity of 6881 km3. Since its publication, GRanD has been applied 

extensively by a variety of studies, although its focus is on the world’s largest dams (e.g., >0.1 km3) and its quantity (7320 

dams) is only a fraction of the 59,000 dams documented in WRD. A spatially resolved inclusion of additional large dams, 

such as those in compliance with the ICOLD definition, has been increasingly desired by the hydrology community and 

encouraged by growing collaborations from multiple disciplines such as biogeochemistry, ecology, energy planning, and 80 

infrastructure managements (Belletti et al., 2020; Boulange et al., 2021; Grill et al., 2019; Lin et al., 2019; Wada et al., 

2017). 

Table 1. GeoDAR product versions and components 

Version Sources Components Count 
Total reservoir 

storage capacity (km3) 

Total reservoir 

Area (km2) 

v1.0 ICOLD Dam points 21,051 6252.1 --- 

v1.1 
Harmonized 

ICOLD-GRanD 

Dam points 23,680 7486.1 --- 

Reservoir polygons 20,214 7168.4 492,068.3 

Note: Total reservoir areas for dam points are not reported because reservoir area values are often missing in ICOLD WRD. 

Here, we present the initial versions of the Georeferenced global Dam And Reservoir dataset, or GeoDAR. We built 85 

GeoDAR by utilizing multi-source dam and reservoir inventories and the Google Maps geocoding API. Our goal is to tackle 

the limitations of existing datasets by offering a dam inventory that is both spatially resolved and has an extended ability to 

access important attributes. As summarized in Table 1, our GeoDAR product includes two successive versions. GeoDAR 

v1.0 is essentially a georeferenced subset of ICOLD WRD. It contains more than 20,000 dam points, each indexed by an 

encrypted identifier (ID) that is associated with a WRD record, allowing for the potential retrieval of all its 40+ proprietary 90 

attributes from ICOLD. GeoDAR v1.1 consists of a) dam points as in v1.0 except that they were further harmonized with 
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GRanD for an improved inclusion of the largest dams, and b) reservoir boundaries for most of the dam points. For 

proprietary reasons, neither version releases any WRD attributes, but upon individual request we may decrypt the ICOLD 

“international code” of each GeoDAR feature, through which the user can match attributes from the WRD website 

(https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp) (see Section 3.3 and Section 4 for details). Due 95 

to geocoding challenges, GeoDAR v1.0 spatially resolved about 40% of the individual dams in WRD. However, these 

georeferenced locations were quality controlled, and after the supplementation by GRanD, v1.1 captures a total storage 

capacity of 7486 km3, a magnitude comparable to the full storage capacity of ICOLD WRD. 

2 Methods 

2.1 Georeferencing rationale 100 

We aim to georeference (i.e., acquire the latitude and longitude of) each dam listed in ICOLD WRD, by using the nominal 

location (i.e., descriptive information) available in the WRD attributes. Examples of the attributes that are important for 

georeferencing include the names of the dam and reservoir, the administrative divisions the dam is affiliated with, and the 

name of the impounded river. Using such attribute information, spatial coordinates of a dam may be either a) queried from 

an existing register or inventory where dam records were already georeferenced and verified, or b) estimated through a 105 

geocoding service that can convert descriptive addresses to numeric spatial coordinates. Our preference was the former when 

possible for the reason of optimizing the georeferencing accuracy. 

2.2 Method overview 

The schematic procedure of GeoDAR production is illustrated in Fig. 1. We started with removing duplicate records from 

the 59,071 dams listed in the original ICOLD WRD (accessed in March 2019). Here “duplicates” are defined as the dams 110 

that are either a) repeatedly recorded with identical (or highly similar) attribute information or b) different dam structures but 

associated with the same reservoir. Examples of the second scenario include a reservoir’s primary dam and secondary dyke 

such as the Boonton Dam and its associated Parsippany Dike (40.884° N, 74.408° W) in New Jersey and multiple controls 

for one reservoir such as Veersedam and Zandkreekdam for Veerse Meer (51.549° N, 3.678° E) in the Netherlands. 

Although “duplicates” in this scenario refer to different dam bodies, including them could lead to double or multiple 115 

counting of the same reservoir storage capacity. After removing the identified duplicates, the cleaned WRD contains 56,783 

unique dams/reservoirs with a total water storage capacity of 7388.3 km3 (based on WRD attribute values). We acknowledge 

that although we tried to be as careful as possible, our duplicate removal may not be always accurate or thorough. 

We then compared the unique ICOLD WRD records against a collection of georeferenced dam registers we acquired from 

regional water authorities and agencies. When the attribute information of a WRD dam matched that in a regional register, 120 

the spatial coordinates from the latter were “borrowed” by the WRD record. We call this process “geo-matching”, which 
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resulted in the georeferencing of 11,859 WRD dams. For the remaining dams in WRD, we implemented the alternative 

geocoding approach (see rationale in Section 2.1) by inputting the available ICOLD attribute information to the Google 

Maps geocoding API (http://developers.google.com/maps). The geocoding process successfully retrieved the spatial 

coordinates of another 9149 WRD dams. The combined output from both geo-matching and geocoding were next collated 125 

with the spatial coordinates and reservoir storage capacities of 124 WRD dams larger than 10 km3 as documented in Wada et 

al. (2017). These processes resulted in GeoDAR v1.0, a total of 21,051 georeferenced WRD dam points with an 

accumulative storage capacity of 6252 km3 (accounting for more than 80% of that in ICOLD WRD). The Venn diagram in 

Fig. 2a provides an overview of the logical relations among the georeferencing sources and methods for GeoDAR v1.0. 

 130 

Figure 1. Schematic flowchart of GeoDAR production. Text in roman indicates applied or produced datasets, and text in 

italics indicates methods or procedures. 

To further improve our spatial inventory of the world’s largest dams, we performed a harmonization between the dam points 

in GeoDAR v1.0 and GRanD v1.3. Through harmonization, we aimed to merge both datasets, remove any duplicates, and 

build association between new dams supplemented by GRanD and the WRD records. This process identified another 2629 135 

dam points, including 1518 associated with ICOLD WRD which were not georeferenced successfully in GeoDAR v1.0. 

With removal of duplicates, this harmonization led to a total number of 23,680 georeferenced dam points, with an 

accumulative storage capacity of 7486 km3 (comparable to that 7388 km3 in the original WRD). An overview of this 

harmonization process is illustrated by the Venn diagram in Fig. 2b. Finally, the reservoir polygons for each of the 

georeferenced dams were retrieved as thoroughly as possible from three global water body datasets: GRanD v1.3 reservoirs 140 

(Lehner et al., 2011), HydroLAKES v1.0 (Messager et al., 2016), and the Landsat-based UCLA Circa-2015 Lake Inventory 

(Sheng et al., 2016). These 24,000 or so dam points (georeferenced from WRD and supplemented by GRanD) and their 

associated reservoir polygons constituted GeoDAR v1.1. Details of all processes and their Quality Assurance and Quality 

Control (QA/QC) are included in the following method sections. 
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 145 

Figure 2. Venn diagrams illustrating the logical relations among georeferencing data sources and methods for GeoDAR. (a) 

GeoDAR v1.0 and (b) GeoDAR v1.1 (dams only). Circles indicate different datasets whereas partitions or ellipses indicate 

portions of the data. Topology of the shapes illustrates logical relations among the data/methods, but sizes of the shape were 

not drawn to scale of the data volume.  
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2.3 Geo-matching regional registers 150 

The ICOLD WRD was a joint contribution from more than 100 member nations, some of which also release detailed and 

publicly accessible dam registers that have been georeferenced. These regional/local registers, with reliable spatial 

coordinates already provided for each dam, were our preferred sources for georeferencing WRD. Since this type of register is 

not available for most countries, we searched multiple water authority and project websites, and collected seven 

georeferenced regional registers or inventories that are open access. Their names, sources, and numbers of documented dams 155 

are summarized in Table 2.  

Table 2. Regional registers or inventories for geo-matching and the validation of geocoding. 

Region Register/Source 
Dam count 

Regional register ICOLD WRD Geo-matched 

Geo-matching 

Brazil RSB (SNISB, 2017) 24,097 1364 675 (49%) 

Cambodia ODC (2015) 73 7 3 (43%) 

Canada CanVec (NRC, 2017) 843 669 427 (64%) 

Europe MARS (2017) 5043 6654 3293 (49%) 

Myanmar ODM (2018) 254 33 13 (39%) 

South Africa LRD (DWS, 2019) 5,592 1112 777 (70%) 

United States NID (USACE, 2013) 73,999 9183 6671 (73%) 

Total  109,901 19,022 11,859 (62%) 

Geocoding validation 

China NPCGIS (accessed 2020) Not counted 23,839 --- 

India NRLD (accessed 2020) 5701 5096 --- 

Japan JDF (accessed 2020) 2421 3117 --- 

Register/source acronyms: Relatório de Segurança de Barragens (RSB, Dams Safety Report of Brazil), Open Development 

Cambodia (ODC), Managing Aquatic ecosystems and water Resources under multiple Stress project (MARS), Open 

Development Myanmar (ODM), List of Registered Dams (LRD) of South Africa, National Inventory of Dams (NID) of US, 160 

National Platform for Common Geospatial Information Services (NPCGIS) of China, National Register of Large Dams 

(NRLD) of India, and Japan Dam Foundation (JDF). Regional inventories were collected with partial reference to the Global 

Dam Watch project (http://globaldamwatch.org). NID records was accessed through the R package compiled by Goteti and 

Stachelek (2016). See full registers, references, and download links in the reference list. 

These seven registers/inventories cover Brazil, Canada, the United States, most European countries (including part of 165 

Russia), South Africa, and part of Southeast Asia, with a total dam count of nearly 110,000. Besides spatial coordinates, each 

of these registers also provides attributes for their documented dams, which were required by the geo-matching process. 
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While other dam inventories could be available, our geo-matching effort for GeoDAR v1.0 was focused on these collected 

ones. However, we referred to additional registers from China, India, and Japan (Table 2) for the validation of our WRD 

geocoding (see Validation). For these additional regional registers, it was either difficult to bulk-download the dam records, 170 

or we were legally restricted from releasing their dam coordinates, as was the case for China, and therefore, we only used 

these registers for the purpose of validation.  

The procedure of geo-matching is illustrated in Fig. 3. Given each regional register, our goal was to find its matching records 

from the subset of ICOLD WRD for the same region, by cross-checking value similarities for several key attributes between 

the two datasets. On one hand, the compared attributes must be mutually available in both datasets. On the other hand, the 175 

attributes should cover various themes so that in combination, they are able to disambiguate records that represent different 

dams but may coincide in certain attributes. Taking both requirements into account, the key attributes used include the dam 

and reservoir names, multiple levels of administrative/political divisions for the dam, and the dam’s completion year. The 

river on which the dam was constructed was also considered for all regions except Cambodia as the register does not contain 

such an attribute. For each of the key attributes, we considered values in WRD and the regional register agreeing with each 180 

other if the similarity score between the value sequences exceeded about 85% (meaning that there are more than 8 pairs of 

identical elements, with consideration of their orders, between two 10-element string sequences). This similarity threshold 

tolerated minor variations in spelling that often occur among different data sources. If an agreement was not reached between 

the two full sequences (e.g., “Maharashtra Pradesh” and “Maharashtra”), the similarity was then tested between the main 

subsets of the sequences in order to increase the matching success.  185 

 

Figure 3. Schematic procedure of geo-matching regional registers. Text in roman indicates applied or produced datasets, and 

text in italics indicates methods or procedures. 

One of the geo-matching challenges was that the levels of political/administrative divisions are not always comparable or 

consistent between WRD and the regional registers. In WRD, the divisions were provided at the levels of country, 190 

state/province, and the nearest town/city, which are inconsistent with some of the registers. For example, the register for 

Brazil (Dams Safety Report in 2017) provides the finest division at the county level, whereas the European inventory (from 
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the MARS (Managing Aquatic ecosystems and water Resources under multiple Stress) project) documents no divisions 

below the national level. To improve the feasibility in division comparison, we performed a “reverse geocoding” for each 

georeferenced regional register using the Google Maps geocoding API. Opposite to a regular (or the so-called “forward”) 195 

geocoding process, this reverse geocoding converts the documented spatial coordinates of each dam, to a parsed address with 

an array of divisions at consecutive administrative levels. These multi-level divisions and subdivisions were appended to the 

original regional registers (Fig. 3), thus enabling a more flexible and complete comparison with the WRD attributes and thus 

an increased success rate of geo-matching.   

We considered a WRD record matched with a regional record if their agreements on the key attributes warranted a 200 

reasonable confidence that the two are the same dam. In principle, a high confidence would require a unanimous agreement 

on all key attributes. However, this ideal scenario was often unnecessary and sometimes impossible. One of the reasons is 

that the key attributes do not always have valid values. In WRD, for instance, the values of “nearest town” for nearly all 

(>99%) US dams are null. While this attribute is valid for most other dams, the nearest town/city in WRD is not necessarily 

the division that administrates or contains the dam as is the case in the township in some regional registers. Another reason is 205 

that our collected multi-source datasets were not collated by a universal standard. As a result, inherent discrepancies of the 

attribute definitions and/or values may exist among the datasets. One example is the dam’s “completion year”, which could 

be ambiguous between the year when the dam construction was concluded and the year when the dam operation was 

initiated or commissioned. These two definitions do not necessarily lead to the same year. To address such inconsistencies, 

we defined a baseline scenario that required any pair of matched WRD and regional records to agree on the following:  210 

• Dam or reservoir name,  

• Country, state/province if values are valid, and  

• At a minimum, (a) either completion year or river if the town/city values disagree or are invalid, or (b) town/city 

when completion years and rivers do not both disagree.  

In compliance with this baseline, we further ranked our geo-matched WRD records according to their specific scenarios of 215 

attribute agreements to three general QA levels (M1, M2, and M3 as explained in Table 3). As the QA level increases (from 

M3 to M1), agreements on the key attributes improved from the baseline to the ideal scenario (i.e., a unanimous agreement). 

Users may refer to the provided QA levels as an indicator of the general reliability of each geo-matched location. 

Following the automated geo-matching process, we performed a manual QC to verify whether the attribute values in the 

matched WRD records in fact agreed with those in the source regional registers. It is worth noting that our geo-matching 220 

purpose was to acquire the spatial coordinates of any matched WRD record from the regional register, rather than collating 

or correcting any existing attribute values. In other words, some of the WRD and regional records may actually refer to the 

same dams but were not matched successfully due to major discrepancies between their attribute values. This led to a 

conservative success rates in our automated geo-matching. In addition, our manual QC identified that about 3% of the geo-
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matched WRD records, most of which came from QA level M3, showed evident matching errors and were therefore 225 

removed. As a result, our geo-matching process concluded with a total of 11,859 WRD records georeferenced (Fig. 3), 

including 2792, 6557, and 2510 for QA levels M1, M2, and M3, respectively (Table 3). The reason why QA level M2 

dominates the total quantity is the missing WRD value of “nearest town” for US dams, which explains about 80% out of the 

6557 level-M2 records. The success rate, i.e., the number of geo-matched dams as a percentage of the number of WRD 

records, varies from about 40% in Southeast Asia to 70% or more in South Africa and US (Table 2), with an overall success 230 

of 62% in all geo-matched regions (Fig. 3). 

Table 3. Quality Assurance and Quality Control (QA/QC) for geo-matching (11,859 final dams in total).  

Quality level Name Country State/Province Town/City Year River 

M1 

2792 dams 

Y Y Y/na Y Y Y 

Y Y Y/na Y Y N/na 

Y Y Y/na Y N/na Y 

M2 

6557 dams 

Y Y Y Y na na 

Y Y Y N/na Y Y 

M3 

2510 dams 

Y Y na Y na na 

Y Y na N/na Y Y 

Y Y Y/na N/na Y N/na 

Y Y Y/na N/na N/na Y 

Note: In column “Quality level”, the initial letter “M” symbolizes QA levels for geo-matching (as opposed to “C” for 

geocoding in Table 5). “Y” indicates that attribute values in WRD and the regional register agree with each other, “N” 

represents disagreement, and “na” indicates attribute values are not available in either or both datasets. Scenarios with 235 

“River” values as “Y” do not apply to Cambodia as river names are missing in the regional register/inventory.  

2.4 Geocoding via Google Maps 

The subset of ICOLD WRD that was not geo-matched includes the remaining 7,163 dams in the geo-matched regions and 

the entire 37,761 dams in the rest parts of the world (Fig. 2a). For these dams, we applied the Google Maps geocoding API, a 

sophisticated cloud-based geocoding service, to retrieve the spatial coordinates of each dam as thoroughly and accurately as 240 

possible. To do so, we designed a recursive geocoding procedure that implemented three primary steps on each dam: forward 

geocoding, reverse geocoding, and QA filtering. The purpose of each of the steps and their logical relations are illustrated in 

Fig. 4.  
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Figure 4. Schematic procedure of geocoding using Google Maps API. Text in roman indicates applied or produced datasets, 245 

and text in italics indicates methods or procedures. The dashed line arrow indicates that this step is not always necessary. 

In brief, the forward geocoding input the text address of each dam, which we formatted by concatenating the WRD attribute 

values, to query the latitude and longitude of the dam. Together with the spatial coordinates, the forward geocoding also 

outputs a descriptive address for the location of the coordinates. The output address components (e.g., feature name, street, 

and political divisions), in return, provided valuable information for QA: if the geocoded coordinates are correct, the 250 

associated address components should agree well with those of the WRD input. However, we noticed that address 

components from forwarding geocoding are often limited in terms of division levels. To complement this limitation, we 

utilized reverse geocoding to convert the coordinates from forward geocoding to an updated address that had all possible 

division levels. The address components from both forward and reverse geocoding were combined and hereafter referred to 

as the “output address”. Like geo-matching, we implemented a QA process to filter out erroneous coordinates. In principle, if 255 

the two sets of address components (from the WRD input and the geocoding output) agreed with each other, the geocoded 

coordinates were considered correct; otherwise, we started over from the forward geocoding by inputting a reformatted 

WRD address (see Table 4). This process repeated until the agreement between the input and output addresses reached the 

best possible QA level (see Table 5). More details are explained below.   

Specifically, to approach the optimal geocoding result, we arranged the attribute values of each WRD record into different 260 

address formats as potential inputs to forward geocoding. The address formats and their preference order are listed in Table 

4. The utilized key attributes included dam name, reservoir name, statement/province, and country. The attribute “nearest 

town” was excluded because it is not always the township that administrates the dam and including it might lead to 

misplaced or void coordinates. To comply with the address standard in Google Maps, the attributes were arranged from the 

most specific to general components, i.e., starting with the dam/reservoir name followed by increasing levels of political 265 

divisions. Variations among the formats were then introduced by a) iterating “dam”, “reservoir”, and “lake” as the title of the 

dam or reservoir name and b) including or excluding each of the division levels. Through experimentation, we observed that 

these variations could indeed make a difference for the output coordinates. Although the most effective format often varied 
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case by case, higher preferences were given to those where the dam or reservoir name was followed by the matching title 

(for instance, Hoover Dam, not Hoover Reservoir or Lake) and where the political divisions were more detailed (Table 4).  270 

Table 4. Input address formats and their preference orders for forward geocoding. 

Iteration level 2 Iteration level 3 Iteration level 1 

Dam name “Dam” 

+/− state or province name +/− country name: 

Reservoir name “Reservoir” 

Dam name “Reservoir” 

Reservoir name “Dam” 

Reservoir name “Lake” 

Dam name “Lake” 

Note: A full address is formatted by the components of dam/reservoir name, state/province, and country. “+/−” notates the 

iteration of including and then excluding this component. A higher iteration level indicates that options in this address 

component are first iterated before those in a lower level. Levels 1 to 3 are the highest to the lowest levels. 

Similar to geo-matching, we ranked the geocoded coordinates to five discrete QA levels based on how well their input and 275 

output addresses agree on individual components (Table 5). The QA levels were then used to rate the results of different 

input addresses (Table 4) and determine the best-quality coordinates for each WRD record. As shown in Table 5, the 

compared address components include the name of the dam or reservoir and its affiliated political divisions from town/city to 

country levels. Consistent with geo-matching, we considered a component agreed on if the similarity of its values from both 

input and output addresses exceeds about 85%. Since the nearest town in WRD was not used for forward geocoding, we 280 

treated it as an “independent reference” for validating the township component in the output address. Although the town or 

city near the dam (from WRD) does not always coincide with that administrating the dam (from the geocoding output), their 

occasional agreement would strengthen our confidence of the geocoded coordinates if other components were also well 

matched between the WRD input and the geocoding output. For this reason, we opted to include the township comparison as 

a supplementary criterion in the geocoding QA process.  285 

As explained in Table 5, the highest QA level (C1) corresponds to a unanimous agreement on all components. We assumed 

that for any WRD record, following the input address order in Table 4 was the most efficient way to reach Level C1. If Level 

C1 was never reached, we selected the pair of coordinates which first led to the highest possible QA level as the optimal 

result (see iteration in Fig. 4). Compared to that of geo-matching, the QA of geocoding applied a more flexible baseline 

scenario (level C5), which only required the agreement on dam or reservoir name. This was because some of the large 290 

reservoirs, particularly those on or near political boundaries, have shared or ambiguous divisions (see Table 5). This 

ambiguity might be further amplified by the geocoded coordinates which could fall in anywhere from the dam to across the 

reservoir water surface. Since we aimed to maximize the quantity of georeferenced records, a flexible baseline level was 

https://doi.org/10.5194/essd-2021-58

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 24 March 2021
c© Author(s) 2021. CC BY 4.0 License.



13 

 

purposely adopted to keep as many geocoded dams as possible. As a result, the automated geocoding procedure yielded a 

total of 16,757 WRD records (Table 5), each with a pair of optimal spatial coordinates and the corresponding QA level.  295 

To complement the automated QA process, we then performed a rigorous QC to manually identify and remove geocoding 

errors. For each QA level, we reviewed the geocoded points against high-resolution Google Earth and Esri images, and 

deleted any identified error where (a) no dam or reservoir could be visibly verified or (b) the WRD attribute information is 

inconsistent with the feature or division labels on Google Maps. It is important to note that the geo-matched coordinates 

from regional registers are usually on or close to the dam bodies, but the geocoded coordinates could be located on the 300 

reservoir of the dam rather than the dam body. The latter case was not considered as an error. However, we observed that in 

mainland China, the geocoded points tended to exhibit a systematic offset of roughly 500 m from their actual dam or 

reservoir features, probably due to misregistration issues between Google Maps imagery and labels. For such Chinese dams, 

we tried to reduce their geocoding offsets as much as possible, by manually relocating the coordinate points to their correct 

dams or reservoirs. Our rigorous QC process ended up removing about 45% of the originally geocoded dams, most of which 305 

stemmed from relatively lower QA levels (Table 5). The complete geocoding procedure resulted in 9,183 georeferenced and 

quality controlled WRD records, with an overall success rate of 20%.   

Table 5. QA/QC for geocoding (9149 final dams in total). 

Quality level Dam  

count 

Dam/Reservoir 

name 

Administrative divisions 

Country State/Province Town/City 

C1 6690 (7214) Y Y Y Y 

C2 1653 (6636) Y Y Y N/na 

                            C2: “Nearest town” in WRD null or likely not the township administrating the dam/reservoir 

C3 271 (328) Y Y N/na Y 

C4 513 (2459) Y Y N/na N/na 

         C3 and C4: “State/province” in WRD null or dam/reservoir likely on state or provincial borders. 

C5 22 (120) Y N/na   

C5: dam/reservoir likely on international borders or in disputed regions (e.g., Kashmir). 

Note: In column “Quality level”, the initial letter “C” symbolizes QA levels for geocoding (as opposed to “M” for geo-

matching in Table 3). In column “Dam count”, the first value reports the dam quantities after QA and QC whereas the 310 

second (parenthesized) value reports the quantity after QA but before manual QC. “Y” means that component values in 

WRD and the output address from geocoding agree with each other, “N” means that values disagree, and “na” means values 

not available/valid in either WRD or the output address.  
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2.5 Supplementation with other global inventories 

The outputs from both geo-matching and geocoding, a total of 21,008 georeferenced ICOLD WRD records (Fig. 2a), was 315 

further supplemented or harmonized by two global dam/reservoir inventories to improve our inclusion of the world’s largest 

dams. We considered this process necessary for two reasons. First, our georeferencing process, particularly geocoding via 

Google Maps API, did not warrant an exhaustive inclusion of the largest dams. This is particularly evident for regions where 

the address and label information in Google Maps is either lacking or difficult to pass the automated QA due to language 

ambiguity or naming discrepancies. Second, through cross-referencing we noted that the attribute values of reservoir storage 320 

capacity provided in ICOLD WRD are occasionally erroneous, e.g., by a factor of 1000 probably caused by unit confusion in 

WRD compilation. As part of the supplementation/harmonization process, we therefore collated the ICOLD reservoir storage 

capacities with those in the two global inventories below and corrected any evident errors in ICOLD. 

2.5.1 Supplementation with Wada et al (2017): forming GeoDAR v1.0 

Wada et al. (2017) compiled a list of all 144 large dams with a reservoir storage capacity larger than 10 km3 in the world. 325 

Among them, 139 dams were provided with quality controlled spatial coordinates. We manually compared these dams with 

ICOLD WRD. We found that 124 of them were documented in WRD but 43 were georeferenced unsuccessfully in our geo-

matching or geocoding procedure. Therefore, we borrowed the spatial coordinates of these 43 large dams from Wada et al. 

(2017) to supplement what we had georeferenced. The coordinates of the other 81 large dams, which we georeferenced 

successfully (34 from geo-matching and 47 from geocoding), were also overwritten by those in Wada et al. (2017) to double-330 

assure and improve their spatial accuracies. This supplementation is illustrated by the Venn diagram in Fig. 2a. 

We then compared the storage capacities of each of the 124 dams in Wada et al. (2017) with those in WRD and identified 31 

of them exhibiting substantial discrepancies between the two datasets. Considering that the storage capacity values in Wada 

et al. (2017) have been verified with other data sources, we used them to replace the original WRD values of these 31 dams. 

The entire supplementation process, including adding new dams, updating existing dam coordinates, and correcting reservoir 335 

storage capacities, increased the total storage capacity of our georeferenced dams by 19%, and 90% of the capacity increase 

comes from the 43 added large dams. For improved clarity, it is worth reiterating that all dams supplemented by Wada et al. 

(2017) were documented in ICOLD WRD. 

The combined results of geo-matching and geocoding, after the supplementation from Wada et al. (2017), defines GeoDAR 

v1.0 which contains 21,051 georeferenced records in ICOLD WRD with a total reservoir storage capacity of 6252.1 km3. In 340 

other words, GeoDAR v1.0 spatially resolved 37% of the WRD records by dam count and 82% by reservoir storage capacity 

(or 85% if using the original total WRD capacity value 7388.3 km3).  
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2.5.2 Harmonization with GRanD: forming GeoDAR v1.1 

While GeoDAR v1.0 largely exceeds GRanD in dam count, a visual comparison of their spatial distributions revealed that 

the latter is often complementary to (instead of completely duplicated by) the former in many regions of the world. This 345 

motivated us to perform a systematic harmonization between the two datasets. The merged version, which we entitled 

GeoDAR v1.1, combines the merits of GRanD in accurately documenting the world’s largest dams and GeoDAR v1.0 in 

providing unprecedented spatial details of smaller but more widespread dams (see Disclaimer section for citation courtesy). 

Compared with other global inventories such as GOODD which only emphasized spatial locations, GeoDAR v1.1 also 

enables the access to many critical attributes of each of the georeferenced dams through the ICOLD WRD website (see 350 

Section 3 for more comparisons). 

We assumed that GRanD, by having collated multiple data sources, is superior to GeoDAR v1.0 in the accuracies of both 

spatial locations and attribute values (particularly reservoir storage capacity) of the world’s largest dams. Following this 

assumption, the harmonizing process (Fig. 5) aimed to achieve four major objectives: 

• Improving spatial coordinates of the dam points in GeoDAR v1.0,  355 

• Adding WRD dams that are not georeferenced in GeoDAR v1.0 but are included by GRanD,  

• Correcting storage capacity errors in the georeferenced WRD, and  

• Absorbing the remaining GRanD dams that are not documented in WRD.  

Detailed processing for each of the objectives is given below.  

 360 

Figure 5. Schematic procedure of harmonizing GeoDAR v1.0 and GRanD v1.3 to form GeoDAR v1.1 Text in roman 

indicates applied or produced datasets, and text in italics indicates methods or procedures. 

First, when a dam in GeoDAR v1.0 also exists in GRanD, the spatial coordinates of the former were replaced by those of the 

latter. We implemented a two-step procedure to identify the overlapping dams between GeoDAR v1.0 and GRanD. Step 1 

was based on attribute association while Step 2 utilized spatial query. More specifically, Step 1 detected matching records 365 
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between ICOLD WRD and GRanD by assessing agreements on several attributes, including dam/reservoir names, 

administrative divisions, impounded rivers, and completion years. This step was essentially the same as the “geo-matching” 

process that was used to link WRD records to regional registers for GeoDAR v1.0 (Section 2.3). The association results, 

after a meticulous manual QC, identified 4258 dams in GRanD that were georeferenced in GeoDAR v1.0. For the remaining 

3062 dams in GRanD, Step 2 utilized their reservoir polygons to spatially intersect with the dam points in GeoDAR v1.0. A 370 

distance tolerance of 500 m was applied in the spatial intersection to account for occasional geographic offsets in GeoDAR 

v1.0 (such as in mainland China; see Section 2.4). As part of the QC, the attribute values of each intersecting pair (one from 

GRanD and the other from WRD) were manually compared to determine whether they are indeed the same dam. This step 

identified another 433 overlapping dams between the two datasets. In total, we found that GeoDAR v1.0 overlaps 4691 out 

of the 7320 dams in GRanD, and their spatial coordinates were updated to be consistent with those in GRanD.  375 

Second, for the remaining 2629 dams in GRanD that do not overlap GeoDAR v1.0, we assumed that at least part of them 

could be matched to the WRD records that were not georeferenced in GeoDAR v1.0. Therefore, we performed another round 

of attribute association between the remaining subsets of GRanD and WRD, with a purpose of including as many WRD 

records as possible by fully exploiting what is already available in GRanD. After QC, this process identified another 1518 

WRD dams that are included in GRanD. These additional WRD dams, with a total storage capacity of 671 km3, were then 380 

added to our inventory using the spatial coordinates provided in GRanD. As a result of the first two objectives, GeoDAR 

v1.1 georeferenced 22,569 (40%) out of the 56,783 dams in ICOLD WRD, including 6209 that overlap GRanD.  

Third, to reduce the impact of possible attribute errors in ICOLD WRD, we next merged the values of reservoir storage 

capacity from both WRD and GRanD to a single updated attribute, where the original values in WRD or Wada et al. (2017) 

were overwritten by those of the overlapping dams in GRanD. This correction led to a minor decrease of 30 km3 (less than 385 

1%) in the total reservoir storage capacity. Eventually, the remaining 1111 dams in GRanD, which were not found in ICOLD 

WRD, were appended to the 22,569 georeferenced WRD dams so that our final inventory absorbed the entire dataset of 

GRanD. It is worth noting that similar to geo-matching (Section 2.3), our attribute association here could be conservative, 

meaning that some of the dams appended from GRanD might be documented in the remaining WRD (the subset not 

georeferenced successfully). 390 

The harmonized dataset, GeoDAR v1.1, contains a total of 23,680 georeferenced dam points, including 16,360 from WRD 

alone, 6209 shared between WRD and GRanD, and the other 1111 from GRanD alone (Fig. 2b). Although this number of 

dams is still about 42% of that of WRD, the total reservoir storage capacity in GeoDAR v1.1 reaches 7486 km3, which 

matches the scale of the original WRD (7388 km3). In comparison, the remaining 34,214 WRD dams not included by 

GeoDAR v1.1 own a total reservoir storage capacity of 716 km3 (or less than 10%), indicating that we have thus far 395 

georeferenced some of the most capacious and influential dams in ICOLD WRD. 
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2.6 Retrieving reservoir boundaries 

In addition to the 23,680 georeferenced dam points, GeoDAR v1.1 also includes their associated reservoir boundaries which 

we retrieved as thoroughly as possible from three global water body datasets: GRanD reservoirs (Lehner et al., 2011), 

HydroLAKES v1.0 (Messager et al., 2016), and UCLA Circa-2015 Lake Inventory (Sheng et al., 2016). These three water 400 

body datasets exhibit an increasing spatial resolution: from 7000+ polygons in GRanD reservoirs provided exclusively for 

GRanD’s dam points, to millions of water body polygons, including both natural lakes and reservoirs, in the other two 

datasets. While HydroLAKES documents 1.4 million water bodies larger than 0.1 km2 (10 ha), the Landsat-based UCLA 

Circa-2015 Lake Inventory further reduced the minimum size to only 0.004 km2 (0.4 ha), resulting in another 7.7 million 

water bodies on the global continental surface. Accordingly, we implemented a hierarchical procedure, where the three water 405 

body datasets were applied in ascending order of spatial resolution to retrieve the reservoir boundaries with an overall 

decreasing size. 

Specifically, GRanD v1.3 provides 7250 reservoir polygons for the 7320 collected dam points. The remaining 70 dams 

without reservoir polygons are either river barrages and thus have no proper reservoirs, or infrastructures that were too recent 

to have filled impoundments. Other rarer cases also include dams that were abandoned or to be constructed (Lehner et al., 410 

2011). These 7250 reservoir polygons were assigned to their associated dam points in GeoDAR v1.1 through GRanD IDs. 

Reservoirs of the remaining 16,360 dam points in GeoDAR v1.1, which were georeferenced from ICOLD alone, were next 

retrieved from HydroLAKES when possible. To avoid duplicates in the reservoirs retrieved from different data sources, we 

only used the subset of HydroLAKES that is spatially independent from (i.e., not intersecting with) GRanD reservoirs. 

Different from reservoir assignment using GRanD, there was no common attribute ID to pair HydroLAKES polygons with 415 

the remaining dam points, so their reservoir retrieval relied completely on spatial association. One major challenge in dam-

reservoir spatial association was the ambiguity caused by the offsets between our georeferenced dam points and their actual 

reservoir polygons (see Section 2.4).  

To tackle this ambiguity, we designed a procedure that consists of three rounds of iteration to progressively optimize 

reservoir-dam association. This procedure was based on two assumptions, both conditional on a reasonable spatial tolerance. 420 

We started with 500 m to be consistent with the georeferencing offset (e.g., observed in China). The first assumption was 

that larger reservoirs are more likely to be documented than smaller ones, in both ICOLD WRD and Google Maps. 

Therefore, the first round of iteration assigned each of the dams to the largest water body within the tolerance. This 

assignment might, however, lead to a situation where multiple dams were assigned to the same reservoir. To untangle this 

situation, the remaining iterations assumed Tobler’s First Law of Geography (Tobler, 1970): “everything is related to 425 

everything else, but near things are more related than distant things” (p.236). Accordingly, for any water body mistakenly 

associated with multiple dams, the second round of iteration reassigned the water body to its closest dam, and the other 

dam(s) within the tolerance, as a result, was/were left unpaired. To reduce the number of such “orphan” dams, a final, third 
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round of iteration assigned the remaining unpaired dams to the next closest water body that was within the spatial tolerance 

and had not been previously associated with any dams. If this led to multiple dams associated with one reservoir again, only 430 

the dam with the closest proximity to the reservoir was kept. Through experimentation, we opted to implement this three-

iteration procedure twice, first using a conservative 500-m tolerance to maximize the accuracy for most associations, and 

then a 1-km tolerance to further minimize the number of orphan dams.  

This multi-iteration procedure retrieved 6902 reservoir polygons from HydroLAKES. For the remaining 9458 dam points 

left unpaired, we applied the same association procedure to continue retrieving their reservoirs from the high-resolution 435 

UCLA Circa-2015 Lake Inventory. Similarly, only the subset that does not intersect with the 6902 HydroLAKES polygons 

was considered, in order to avoid duplicates in the retrieved reservoirs from different datasets. The use of UCLA Circa-2015 

Lake Inventory retrieved another 6062 reservoirs. Combining the results from all three water body datasets, 20,214 (85%) 

out of the 23,680 georeferenced dams were paired with their reservoir polygons. To this end, both of the dam points and their 

associated reservoir polygons were considered as the final product components in GeoDAR v1.1. 440 

3 Results and discussions 

3.1 Product components 

Following method descriptions, here we present the product components of the two current versions for GeoDAR (v1.0 and 

v1.1). Although previously summarized in Table 1, the two GeoDAR versions and their component statistics are further 

explained in Table 6, and spatial distributions of the dam points and reservoir polygons are visualized in Figs. 6 and 7. 445 

3.1.1 GeoDAR v1.0: dams 

GeoDAR v1.0 is a collection of 21,051 dam points georeferenced exclusively for ICOLD WRD (Fig. 6a). In other words, 

each dam point corresponds to the location of a unique WRD record, and the dam latitude and longitude coordinates were 

acquired independently from GRanD. Among the 21,051 dam points, 11,825 or 56% were retrieved from geo-matching 

regional dam registers, 9102 or 43% from Google Maps geocoding API, and the remaining 124 largest dams from the spatial 450 

inventory in Wada et al. (2017) (Fig. 6b). For improved accuracies, the WRD storage capacities of these 124 large reservoirs 

were replaced by the values in Wada et al. (2017) (see Section 2.5.1), and unless stated otherwise, our following statistics on 

storage capacities were calculated after this replacement. 

The total reservoir storage capacity of all the 21,051 dams is 6252.1 km3, meaning that GeoDAR v1.0 georeferenced 37% of 

the 56,786 WRD records but included 82% of their cumulative reservoir storage capacity (7639 km3). The total storage 455 

capacity of the 124 largest dams from Wada et al. (2017), despite being limited in number, reaches 3807 km3 or 61% of the 

cumulative storage capacity in GeoDAR v1.0, and the other ~40% capacity was split almost equally between the remaining 
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20,000+ geo-matched and geocoded dams. Although the regional registers used for geo-matching only cover seven 

countries, the dams in GeoDAR v1.0, as shown in Fig. 6b, are distributed in 148 out of the 164 countries in WRD (including 

ICOLD member and non-member countries), largely owing to our geocoding efforts through Google Maps API. Again, 460 

GeoDAR v1.0 was produced independently from other comprehensive global dam datasets such as GRanD. While its dam 

quantity can be further expanded, this version provides users a flexibility to choose the optimal dataset based on their 

specific purposes or study regions. Validation of our georeferencing accuracy for v1.0 is provided in Section 3.2.  

Table 6. GeoDAR product versions and components 

Version Description Component Acquisition sources/methods Count 
Storage 

capacity (km3) 

Reservoir polygon 

area (km2) 

v1.0 

 

Georeferenced 

ICOLD 
Dam points 

Geo-matched via regional registers 11,825 1274.1 --- 

Geocoded via Google Maps API 9102 1170.7 --- 

Supplemented by Wada et al. (2017) 124 3807.3 --- 

Total 21,051 6252.1 --- 

v1.1 

 

Harmonized 
ICOLD and 

GRanD 

Dam points 

GeoDAR v1.0 alone 16,360 605.1 --- 

GRanD v1.3 and GeoDAR 1.0 4691 5585.1 --- 

GRanD v1.3 and other ICOLD 1518 702.3 --- 

GRanD v1.3 alone 1111 593.6 --- 

Total 23,680 7486.1 --- 

Reservoir 

polygons 

GRanD v1.3 reservoirs 7250 6810.6 474,192.8 

HydroLAKES v1.0 6902 242.4 13,488.2 

UCLA Circa-2015 Lakes 6062 115.4 4387.3 

Total 20,214 7168.4 492,068.3 

Note: Dam points from “GeoDAR v1.0 alone”, “GRanD v1.3 and GeoDAR 1.0”, and “GRanD v1.3 and other ICOLD” in 465 

GeoDAR v1.1 represent our most complete collection (22,569 dams) of georeferenced ICOLD WRD records. Refer to the 

Venn diagrams in Fig. 2 for more illustration of the logical relations among the georeferencing sources/methods.  

3.1.2 GeoDAR v1.1: dams and reservoirs 

GeoDAR v1.1 consists of a) 23,680 dam points (Fig. 6a) which were harmonized from GeoDAR v1.0 and GRanD v1.3, and 

b) 20,214 reservoir polygons (Fig. 7). In the 23,680 dam points, 16,360 or 69% come from GeoDAR v1.0 alone, 6209 or 470 

26% shared by ICOLD WRD and GRanD, and the other 1111 or 5% from GRanD alone (Table 6; Fig. 6c). Among the 6209 

shared dams, 4691 were georeferenced in both GeoDAR v1.0 and GRanD, and the remaining 1518 were newly “geo-

matched” by GRanD. In other words, the harmonization with GRanD introduced another 1518 dams from WRD that were 

not georeferenced successfully in GeoDAR v1.0 This resulted in a total of 22,569 georeferenced WRD records, or 40% of all 

WRD records, in GeoDAR v1.1. In addition to the expanded number of georeferenced WRD dams, GRanD also 475 

supplemented another 1111 dams which we were unable to associate affirmatively with WRD records. The total 2629 dams 
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added by GRanD, shown as “GRanD v1.3 & other ICOLD” and “GRanD v1.3 only” in Fig. 6c, are distributed worldwide 

and complement the results of v1.0 particularly in regions such as Africa and Central Asia, where geocoding using Google 

Maps was challenging. After this ICOLD-GRanD harmonization, the spatial coverage of the dam points in GeoDAR v1.1 

increased to 154 out of the 164 countries in WRD.  480 

As described in Section 2.5.2, we substituted the reservoir storage capacities in GRanD for the original capacity values of 

their overlapping WRD dams. As a result, the total reservoir storage capacity in GeoDAR v1.1 reaches 7486.1 km3, which 

matches the cumulative capacity in the entire ICOLD WRD (see Section 3.4 for more comparisons with ICOLD). As 

reported in Table 6, 75% (5585 km3) of the total storage capacity in GeoDAR v1.1 is explained by the 4691 relatively large 

dams georeferenced in both GeoDAR v1.0 and GRanD. The 16,360 smaller dams from GeoDAR v1.0 alone contribute only 485 

8% (605 km3) of the total storage capacity, which is comparable to the subset from GRanD alone (594 km3) or both GRanD 

and other ICOLD WRD (702 km3). These capacity contributions suggest that compared to GRanD, the major improvement 

of GeoDAR lies on the increased number of relatively small dams, rather than the increase in total storage capacity of the 

dams (see Section 3.5 for more comparisons with GRanD).  
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 490 

Figure 6. Georeferenced dam points in GeoDAR. (a) A total of 23,680 dam points in v1.1 superimposed by 21,051 dam 

points by in v1.0. (b) Georeferencing methods and data sources for v1.0. (c) Data sources for v1.1. 
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Different from GeoDAR v1.0, version 1.1 also provides a component of reservoir polygons (Fig. 7) which represent water 

impoundment extents associated with 20,214 or 85% of the 23,680 georeferenced dam points. Reservoir polygons for the 

remaining 15% of dam points were retrieved unsuccessfully due to a combination of factors, such as limited spatial 495 

resolutions of the applied water masks, offsets in our georeferenced dam points, and the fact that some of the dams (e.g., 

river barrages) have no evident water impoundments. Nevertheless, the retrieved 20,214 reservoir polygons have a 

cumulative area of 492,068 km2, accounting for 98% of the total reservoir area of all georeferenced dams in GeoDAR v1.1 

(reservoir areas without polygons are based on ICOLD WRD attributes). These reservoir polygons also correspond to a 

cumulative storage capacity of 7168 km3, accounting for nearly 96% of the total storage capacity in v1.1. These statistics 500 

indicate that the reservoirs whose boundaries were retrieved unsuccessfully were mostly small in area and storage.  

The numbers of reservoir polygons retrieved from each of the three water body datasets are fairly comparable (6000 to 7000 

each), but the total reservoir storage capacity and area both decrease drastically with the increasing spatial resolution of the 

water body datasets (Table 6). As a result, the average reservoir size decreased from 65 km2 in those from GRanD, to 2 km2 

from HydroLAKES and then less than 1 km2 from the UCLA Circa-2015 Lake Inventory. This result is overall consistent 505 

with the design of our hierarchical procedure (Section 2.6), where smaller reservoirs were successively retrieved with the 

help of finer water masks. It is important to note that the retrieved polygons are not always the largest water extents of the 

reservoirs because water boundaries in the retrieval sources were not necessarily mapped in the maximum inundation 

periods. For example, the UCLA Circa-2015 Lake Inventory contains approximately 9.5 million water bodies larger than 0.4 

ha, which were mapped from Landsat images acquired during the “steady” climate periods (Lyons and Sheng, 2018) and 510 

thus represent the average seasonal extent of each water body (Sheng et al., 2016). Despite not always being the largest 

water extents, our retrieved reservoir polygons enhanced the spatial details of global reservoir locations, using which users 

can further expand or refine the water boundaries to their specific needs.   

In addition, we foresee several other applications of our produced reservoir polygons in GeoDAR v1.1. These 20,000 plus 

reservoirs, which are mostly distributed in the populated middle-latitude regions (Fig. 7), reveal an unprecedented detail of 515 

human footprints on the natural surface hydrology. Together with other high-resolution surface water data such as the UCLA 

Circa-2015 Lake Inventory and the Joint Research Centre’s Global Water Database (Pekel et al., 2016), these reservoir 

polygons can help us better disambiguate artificial water impoundments from natural lakes and free-flowing river reaches. 

This water body separation is overdue, as it provides a fundamental base map for assessing and modelling how human water 

regulations alter the natural surface water regimes. By flagging more reservoirs from natural lakes, this map also expanded 520 

the global training pool for machine learning algorithms that aim to thoroughly classify or detect reservoirs from remote 

sensing images.  
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Figure 7. Reservoir polygons and their retrieval data sources in GeoDAR v1.1. 

3.2 Georeferencing accuracy 525 

Separate from the QA/QC during data production, we also performed a posterior validation to further assess the accuracy of 

our georeferenced ICOLD WRD records. The validation sample consists of nearly 1000 dam points (Fig. 8), which were 

selected worldwide from GeoDAR v1.0 and represent the results of our geo-matching and geocoding prior to the 

supplementation by GRanD. The collection of the validation points followed a stratified sampling method (Table 7). From 

the subset of GeoDAR v1.0 produced by geo-matching, we randomly selected 30 dam points for each of the geo-matching 530 

regions (Brazil, Canada, Europe, South Africa, and United States), with the exception of Southeast Asia (Cambodia and 

Laos) where all 16 geo-matched WRD dams were included for validation. We allowed the sample to occasionally overlap 

with GRanD because all dams in GeoDAR v1.0 were georeferenced independently from GRanD and those shared with 

GRanD reflect our georeferencing accuracy for the world’s largest dams. However, for each regional sample, we limited the 

number of GRanD-overlapping dams to no more than 30% of the entire regional sample size (Table 7). This was to comply 535 

with the size ratio between GRanD and GeoDAR v1.0 (about 1:3) so that our validation still emphasized smaller dams newly 

georeferenced in our dataset. We also randomly selected 30 out of the 124 large WRD dams supplemented by Wada et al. 

(2017), considering that they are part of GeoDAR v1.0 and the supplementation was based on attribute association that is 

similar to regional geo-matching. In total, 192 dams were selected for validating the geo-matching accuracy. For each dam, 
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we manually checked whether its spatial coordinates in GeoDAR v1.0 are consistent with those documented in the geo-540 

matching source (see source references in Table 2).  

Table 7. Validation statistics for GeoDAR v1.0 

Region Main reference Sample Accuracy Error source 

Geo-matching  196; 58 192 (98.0%)  

Brazil RSB 30; 5 29 (96.7%) Register 

Canada CanVec 30; 9 30 (100%) --- 

Europe MARS 30; 3 29 (96.7%) Register 

South Africa LRD 30; 10 30 (100%) --- 

Southeast Asia ODC; ODM 16 (all); 3 16 (100%) --- 

United States NID 30; 5 30 (100%) --- 

Global Wada et al (2017) 30; 23 28 (93.3%) Register 

Geocoding  782; 170 748 (95.7%)  

China NPCGIS 200; 15 199 (99.5%) Misplacement 

India NRLD 200; 21 198 (99.0%) Misplacement 

Japan JDF 178 (all); 110 157 (88.2%) Misplacement; Google Maps label 

Others Google Maps 204; 24 194 (95.1%) Misplacement 

ALL  978; 228 940 (96.1%)  

Note: In “Sample”, the two numbers delimited by semicolon indicate the size of the validation sample from GeoDAR v1.0 

(left) and the number of dams in this sample that overlap with GRanD v1.3 (right), respectively. “Cause(s) of error” lists 

error scenarios in decreasing order of frequency. “Register” indicates geo-matching errors due to inaccurate spatial 545 

coordinates in the reference register/inventory. “Misplacement” indicates geocoding errors where the information of ICOLD 

WRD and the validation reference disagrees with each other. “Google Maps label” indicates geocoding errors due to 

endogenous labelling mistakes in Google Maps. See Table 2 (column “Register/Source”) for reference details. 

From the remaining subset of GeoDAR v1.0 produced by geocoding, we followed the same stratified sampling scheme and 

randomly selected 200 or so dam points for each of the validation regions: China, Indian, Japan, and the other part of the 550 

world as a whole (Table 7). Compared to geo-matching which was based on attribute association with georeferenced 

regional registers, the geocoding process was more complicated, and relied largely on the geographic information repository 

in Google Maps and its embedded geocoding algorithms. To increase our confidence in the geocoding results, we therefore 

purposefully enlarged the sample size for each validation region. As described in Section 2.3, three additional georeferenced 

datasets from authoritative registries in China, Indian, and Japan were used exclusively for the purpose of geocoding 555 

validation (refer to Table 2 for register details). For the remaining regions of the world, the validation was based on a 

meticulous manual comparison between the WRD information of each sampled dam point and its associated Google Maps 

label, including the dam/reservoir name, administrative divisions, the nearest town/city, and the impounded river name if 
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possible. When necessary, we also referred to other auxiliary information including open-source gazetteers and other 

literature. The auxiliary validation sources were provided in the attribute table of GeoDAR v1.0 (see data attributes in 560 

Section 3.3). In total, we collected 782 dam points for validating the accuracy of geocoding, including all 178 Japanese dams 

in GeoDAR v1.0 (before GRanD supplementation). The distribution of all sampled validation dams is shown in Fig. 8. 

As reported in Table 7, our geo-matching accuracy ranges from 93% to 100% among different regions, with an overall 

accuracy of 98%. Causes of the identified geo-matching errors (see the last column in Table 7) were not necessarily mistakes 

in our attribute association between ICOLD WRD and the georeferenced registers, but sometimes inaccurate spatial 565 

coordinates provided by the georeferenced registers themselves. An example is Skutvik Dam/Reservoir (completion year 

1991) in Norway (Fig. 8), where coordinates are documented to be 68.025° N and 15.345° E in MARS. However, inspected 

from high-resolution Google Maps imagery, no dam or reservoir, operational or abandoned, could be conclusively verified at 

or near this coordinate point, except for three surrounding lakes that are all over 2 km away and labelled with other names 

(Vanbassenget, Lanstøvatnet, and Stenslandsvatnet). We believed that the documented coordinates for this dam are probably 570 

inaccurate.  

The accuracy of our geocoded sample ranges from 88% in Japan to about 99% in China and India, with an overall accuracy 

of 96%. As shown in Table 7, most of the errors were related to the misplacement of the dam/reservoir to another feature, 

typically a free-flowing river reach, which shares the name and administrative divisions with the dam/reservoir. One 

example is Nambiar Dam near the city of Tirunelveli in the state of Tamil Nadu, southern India (Fig. 8). The correct 575 

coordinates, according to INRLD, are 8.374° N and 77.738° E where the Google Maps labelled “Nambi Dam” instead of 

Nambiar Dam. Probably because of this spelling inconsistency, our geocoded coordinates were misplaced on a reach of the 

Nambi(y)ar River (8.435° N, 77.569° E, labelled as “Nambiyar”) about 20 km upstream from the dam. Although our 

recursive geocoding procedure (Section 2.4) embedded an automated filter that examines the type of the feature at each 

returned point (see released scripts through Code availability), this filter was designed to only eliminate the coordinates 580 

where feature types are clearly disparate from a dam or reservoir (such as commercial and residential buildings). Our 

experiments showed that dams/reservoirs and free-flowing river reaches could both be categorized as “establishment” of 

“natural feature” and a feature type that is more specific to dams/reservoirs was hardly seen. Thus, to avoid over-filtering, we 

allowed a certain ambiguity in the geocoded feature types, and then relied on manual QC to correct or remove mistaken 

coordinates as thoroughly as possible. The misplacement of dams to their upstream/downstream river reaches is a major 585 

cause of the relatively low geocoding accuracy in Japan. Through experimentations, we noticed that Google Maps labelling 

for some of the Japanese dams that are homonymous to their impounded rivers, is either lacking or highly adapted to the 

Japanese language. The latter further challenged our geocoding accuracy using English-based ICOLD information. For one 

of the errors in Japan, we verified from the JDF register that Google Maps mislabelled Myojin Dam in Horoshima Prefecture 

(34.587° N, 132.505° E) as “Nabara Dam” whose correct location is 3 km downstream (34.563° N, 132.517° E; Fig. 8). As a 590 
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result, our georeferenced coordinates for Nabara Dam were wrong although our geocoding process was correct. However, 

given what we have observed, such endogenous labelling errors in Google Maps are probably rare. 

Integrating the validations for both geo-matching and geocoding, our overall georeferencing accuracy is 96.1% in terms of 

dam count, or 97.5% in terms of total storage capacity based on the sampled 978 dams. While these statistics can be 

considered as the accuracies of our data product, the identified errors in the validation sample have been corrected wherever 595 

possible in our released GeoDAR v1.0 and v1.1. 

 

Figure 8. Validation sample and results for GeoDAR v1.0. The validation sample consists of 978 georeferenced ICOLD 

dams, including 196 dams from geo-matching and 782 dams from geocoding. See Table 7 for detailed validation statistics. 

3.3 Data attributes and usage 600 

The GeoDAR dataset, including dam points for v1.0 and both dam points and reservoir polygons for v1.1, is provided as 

three separate shapefiles. For user convenience, we also duplicated the two dam point shapefiles in the comma-separated 

values (csv) format. The file names and attributes are explained in Table 8. Although most of our dam points were 

georeferenced using WRD records, our published GeoDAR complies with the proprietary rights of ICOLD and does not 

directly release any attribute from WRD. The attributes we provide in GeoDAR, as listed in Table 8, are only limited to our 605 

georeferencing methods, QA/QC, validation, and other information (such as spatial coordinates and part of the reservoir 

storage capacities) that is already open source or has been permitted for use by the original producers.  
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Table 8. Attributes in the data products of GeoDAR 

Attribute Description and values 

v1.0 dams (file name: GeoDAR_v10_dams; format: comma-separated values (csv) and point shapefile) 

ID_v10 Dam ID in this version (type: integer). Note this is not the “International Code” in ICOLD WRD but is 

associated with “International Code” through encryption.   

latitude Latitude of the dam point (type: float) on datum World Geodetic System (WGS) 1984. 

longitude  Longitude of the dam point (type: float) on WGS 1984. 

geomtd Georeferencing methods (type: text). Unique values include: “geo-matching CanVec”, “geo-matching LRD”, 

“geo-matching MARS”, “geo-matching NID”, “geo-matching ODC”, “geo-matching ODM”, “geo-matching 

RSB”, “geocoding (Google Maps)”, and “Wada et al. (2017)”. Refer to Table 2 for acronyms. 

QA_level Quality assurance (QA) levels (type: text). Unique values include: “M1”, “M2”, “M3”, “C1”, “C2”, “C3”, 

“C4”, and “C5”. Refer to Tables 3 and 5 for value explanation. 

rv_mcm Reservoir storage capacity or volume in million cubic meters (type: float). Values are only available for dams 

acquired from Wada et al. (2017). ICOLD WRD capacity values are not released for proprietary reasons. 

val_scn Validation result (type: text). Unique values include: “correct”, “register”, “misplacement”, and “Google 

Maps label”. Refer to Table 7 for value explanation. 

val_src Sources used for validation (type: text). Values include: “CanVec”, “Google Maps”, “JDF”, “LRD”, 

“MARS”, “NID”, “NPCGIS”, “NRLD”, “ODC”, “ODM”, “RSB”, “Wada et al. (2017)”, and other websites 

and literature. Refer to Table 2 for acronyms.  

v1.1 dams (file name: GeoDAR_v11_dams; format: comma-separated values (csv) and point shapefile) 

ID_v11 Dam ID in this version (type: integer). Note this is not the “International Code” in ICOLD WRD but is 

associated with “International Code” through encryption. 

ID_v10 v1.0 ID of this dam (as in ID_v10) if georeferenced in v1.0 (type: integer).  

ID_GRDv13 GRanD ID of this dam if georeferenced in GRanD v1.3 (type: integer). 

latitude Latitude of the dam point (type: float) on WGS 1984. Value may be different from that in v1.0.  

longitude  Longitude of the dam point (type: float) on WGS 1984. Value may be different from that in v1.0. 

pnt_src Source(s) of the georeferenced dam point. Unique values include: “GeoDAR v1.0 alone”, “GRanD v1.3 and 

GeoDAR 1.0”, “GRanD v1.3 and other ICOLD”, “GRanD v1.3 alone”. Refer to Table 6 for value 

explanation. 

geomtd_v10 Same as geomtd in v1.0 if this dam was georeferenced in v1.0.  

QA_level Same as QA_level in v1.0 if this dam was georeferenced in v1.0. 

rv_mcm_v11 Reservoir storage capacity in million cubic meters in this version (type: float). For proprietary reasons, values 

are only provided for dams acquired from Wada et al. (2017) and GRanD v1.3. 

rv_mcm_v10 Same as rv_mcm in v1.0 if this dam was georeferenced in v1.0. 

val_scn Same as val_scn in v1.0 if this dam was georeferenced in v1.0. 

val_src Same as val_src in v1.0 if this dam was georeferenced in v1.0. 

v1.1 reservoirs (file name: GeoDAR_v11_reservoirs; format: polygon shapefile) 

plg_src Source of the retrieved reservoir polygon (type: text). Unique values include “GRanD v1.3 reservoirs”, 

“HydroLAKES v1.0”, and “UCLA Circa-2015 Lakes”. Refer to Table 6 for more details. 

plg_a_km2 Area of the retrieved reservoir polygon in square kilometres (calculated using the cylindrical equal area 

projection on WGS 1984).  

All other attributes in v1.1 dams. 

Note: Missing or inapplicable values are flagged by “Null” for text-type attributes and “-999” for numeric-type attributes. 610 
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Although WRD attributes are not directly available in GeoDAR, we suggest two possible ways for users to acquire at least 

some of the essential attributes. Upon the user’s reasonable request, we can decrypt GeoDAR IDs (Table 8) to ICOLD’s 

International Codes, and using the International Codes, the user can link each of the dams/reservoirs in GeoDAR to the 

entire 40 or so proprietary attributes in WRD. However, this is based on the premise that the user needs to acquire the WRD 

attribute data from ICOLD, and that the user agrees to not release the decryption key or the WRD attributes to the public. 615 

Alternatively, since we imposed no usage restrictions on our spatial features (geometric dam points and reservoir polygons), 

users are free to integrate them with other datasets and tools, such as remote sensing observations and modelling, to acquire 

the needed attributes, particularly those not yet documented in ICOLD WRD. Acquisition methods have been exemplified 

for at least the following attributes: reservoir hypsometry and bathymetry (Li et al., 2020; Yigzaw et al., 2018), surface 

evaporation loss (Mady et al., 2020; Zhan et al., 2019; Zhao and Gao, 2019a), operation rules (Shin et al., 2019; Yassin et al., 620 

2019), completion years (Zhang et al., 2019), storage capacities (Liu et al., 2020), and the changes in water area (Pekel et al., 

2016; Yao et al., 2019; Zhao and Gao, 2019b), level (Cretaux et al., 2011; Schwatke et al., 2015), and storage or volume 

(Busker et al., 2019; Cretaux et al., 2016; Gao et al., 2012; Zhang et al., 2014).  

3.4 Comparisons with other global dam and reservoir datasets 

To better understand the improvements and potential applications of GeoDAR, we compare it with three major global dam 625 

and reservoir datasets: the complete ICOLD WRD, GRanD (v1.3), and GOODD (V1). To recap the pros and cons of each 

dataset, ICOLD WRD documents over 56,000 unique dam records with a broad suite of attributes, but the provided dam 

records are not georeferenced. GOODD depicts the spatial details of more than 38,000 dam points and their catchments but 

does not include any other attribute. GRanD is georeferenced and provides multiple essential attributes, but the records are 

limited to 7320 large dams. Accordingly, our comparison first emphasized the aspects of dam quantity, reservoir area, and if 630 

applicable, the spatial pattern and distribution of the dams. These aspects are directly acquirable from the spatial features 

(i.e., dam points and reservoir polygons) in GeoDAR. Considering that each GeoDAR feature is explicitly linked to a WRD 

or GRanD record which contains detailed attributes, our comparison also includes two important attributes, i.e., reservoir 

storage capacity and catchment area, to help inform the extended capability of GeoDAR once the attributes are acquired.  

3.4.1 Comparisons with ICOLD WRD 635 

Since georeferencing ICOLD WRD was one of our primary motivations for this work, we view the most important 

improvement of GeoDAR is the fact that it is spatially resolved. Despite our efforts to integrate multi-source registers and 

the Google Maps geocoding API, georeferencing WRD, particularly smaller dams in poorly documented regions, has proven 

to be challenging. This challenge was reflected by the proportion of WRD that was spatially resolved in GeoDAR. As 

compared in Table 9, GeoDAR v1.0 included 37% of the 56,783 records in the entire WRD. Although limited in number, 640 

these georeferenced records compromised a balance between geocoding thoroughness and quality (see Sections 2.3 and 2.4), 
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and account for 82% of the total reservoir storage capacity in WRD. The larger proportion in terms of storage capacity 

indicates that most of the sizable dams in ICOLD WRD have been spatially resolved. This message is also corroborated by 

Fig. 9. More than 60% of the 13,248 WRD dams larger than 10 mcm, for example, have been georeferenced in GeoDAR 

v1.0 (Fig. 9a). While 51% of the 20,222 WRD dams smaller than 1 mcm were not georeferenced, these smaller dams 645 

account for less than 7% of the total WRD storage capacity (Fig. 9b). After harmonization with GRanD, the proportion of 

WRD georeferenced in GeoDAR v1.1 increased to 40% by count or 91% by storage capacity (Table 9), and these 

percentages represent our best result for georeferencing WRD. By absorbing the remaining dams in GRanD as well, v1.1 has 

a total dam count equivalent to 42% of ICOLD WRD, and a cumulative storage capacity only 2% below that of the full 

WRD (Table 9; Fig. 9b). Compared to v1.0, the margin between the distribution curves of GeoDAR v1.1 and WRD, 650 

particularly for relatively large dams, was further reduced (Fig. 9a). As a result, the number of dams larger than 10 mcm in 

GeoDAR v1.1 reaches 80% of that in WRD, and the number of dams larger than 1 mcm exceeds half of that in WRD. 

Table 9. Summative comparisons among GeoDAR, ICOLD, and GRanD 

Statistics 
GeoDAR ICOLD GRanD 

v1.0 (WRD) v1.1 (WRD) v1.1 (entire) Entire WRD v1.3 

Dam count 

21,051 

37% (of entire WRD), 

288% (of GRanD) 

22,569 

40%, 308% 

23,680 

42%, 323% 
56,783 7320 

Storage capacity 

(km3) 

6252.1 

82%, 91% 

6892.5 

91%, 100% 

7486.1 

98%, 109% 
7608.6 6881.0 

Reservoir area 

(km2) 
--- 

466,178.7 

90%, 98% 

492,068.3 

95%, 104% 
516,566.5 474,192.8 

Catchment area 

(103 km2) 
--- 

134,236.5 

92%, 115% 

147,565.6 

101%, 127% 
145,837.3 116,455.9 

Note: When a dam is documented in both GRanD and WRD, we considered that attribute values in GRanD had precedence 

over those in WRD for computing “Reservoir storage capacity” and “Catchment area” for GeoDAR v1.1 and “Entire WRD”. 655 

When a dam has a reservoir polygon and an area attribute, the polygon area took precedence for computing “Reservoir area”. 

Reservoir area statistics for GeoDAR v1.1 only include the dams whose reservoir polygons were successfully retrieved.  
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Figure 9. Comparison among GeoDAR, ICOLD WRD, and GRanD by reservoir storage capacity. (a) Frequency (count) 

distribution. (b) Cumulative (integral) storage capacities. Statistics were based on 80 equal-size bins on a logarithmic scale 660 

between the minimum and maximum storage capacities (i.e., 0.001 to 204,800 mcm).  

We reported in Section 3.1 that the georeferenced dams in GeoDAR v1.0 are distributed in 148 out of the 164 countries 

registered in ICOLD WRD, and the spatial coverage was further improved to 154 countries in v1.1. Since GeoDAR v1.1 

represents a better version of our spatial dam inventory, we compare it with WRD in terms of dam count and reservoir 

storage capacity for each of the registered countries worldwide (Fig. 10). Among the 164 WRD countries, the median 665 

proportion of the dam count covered by GeoDAR is 57%, with the first and third quartiles being 33% and 82%, respectively. 

As shown in Fig. 10a, better coverages tend to occur in North America, Europe, Russia, Oceania, and part of South America 

and Africa, whereas poorer coverages are seen in East Asia, South Asia, and part of the Middle East. The coverages in China 

and India, for example, are only about 20% due to a large quantity of WRD records for these two countries (23,737 in China 

and 5058 in India) but relatively limited information on Google Maps. Despite lower percentages, the dam counts for China 670 

and India in GeoDAR are nearly six and three times of those in GRanD, respectively (see Section 3.4.2 for details), 

suggesting that our improvements on the spatial details of dams for major emerging nations are substantial. Compared with 

dam counts, GeoDAR’s coverage for reservoir storage capacity is higher overall (Fig. 10b). Among the 156 countries with 

documented reservoir storage capacities, the median coverage in GeoDAR reaches 97%, with the first and third quartiles 

being 86% and nearly 100%, respectively.  675 
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To assess the coverage in GeoDAR for leading dam contributors, we further highlight the top five countries by either dam 

count or total reservoir storage capacity. According to ICOLD WRD, the top five countries by dam count are China (23737), 

US (8911), India (5058), Japan (3087), and Brazil (1346). GeoDAR v1.1 covers the dam counts of these countries by 23%, 

88%, 19%, 20%, and 58%, respectively, and the coverages for their total reservoir storage capacities are substantially higher: 

ranging from 88% for China to 98% for India. Similarly, the top five countries by total reservoir storage capacity are Canada 680 

(976.2 Gigatons (Gt)), US (919.2 Gt), Russia (917.8 Gt), China (815.1 Gt), and Brazil (673.3 Gt). GeoDAR covers these 

capacities by about 100%, 97%, 98%, 88%, and 92%, respectively, in comparison to 88%, 88%, 78%, 23%, and 58% in 

terms of dam count. These comparisons again suggest that, although less than half of the WRD records were spatially 

resolved in GeoDAR, georeferencing the remaining over 50% of WRD, which could be more challenging, will only add a 

marginal increase of the total reservoir storage capacity.   685 

 

Figure 10. GeoDAR (v1.1) as proportion of ICOLD WRD for each country or territory. (a) By dam count and (b) by 

reservoir storage capacity. For consistency, storage capacities of dams shared by WRD and GeoDAR were based on the 

values in GeoDAR.  

Catchment areas of the reservoirs often indicate the stream order of the impounded river, and thus the scales of flow and 690 

sediment alterations by the dam. Locating dams with an improved representation of catchment areas, particularly smaller 

ones, has been increasingly needed by hydrologic modelling and watershed managements (Grill et al., 2019; Lin et al., 

2019). To evaluate how GeoDAR spatially resolved WRD in this aspect, we directly used the values of the attribute 

“catchment area” provided in WRD. As many records in WRD are missing catchment areas, we combined the available 

values in both WRD and GRanD, and when a dam has catchment areas in both datasets, we preferred the value in GRanD. 695 

As reported in Table 9, the subset of WRD georeferenced in GeoDAR v1.1 has a total catchment area of 134 million km2, 

which covers 92% of the total catchment area in the entire WRD. The remaining 8% catchment area was compensated for by 

the inclusion of the remaining non-WRD dams from GRanD. It is worth mentioning that these statistics do not take into 

account the dams without valid catchment areas. While it is possible to retrieve catchment boundaries for GeoDAR dams 

(e.g., using high-resolution DEM as per Mulligan et al. (2000)), acquiring accurate catchment areas of the other WRD dams 700 
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(which have not been georeferenced) is prohibited due to unknown pour point locations. Therefore, our comparison was only 

based on the attribute values that are already available. This explains why GeoDAR v1.1 georeferenced ~40% of all WRD 

records by count but included ~90% of the total catchment area. Similar to the pattern of reservoir storage capacity, higher 

proportions of the WRD catchment area covered by GeoDAR are skewed towards the dams with larger catchment areas (Fig. 

11a). For example, the number of dams with a catchment area larger than 10 km2 in GeoDAR equals 87% of that in WRD, 705 

and the coverage increases to 93% for the dams with a catchment area larger than 100 km2.  

 

Figure 11. Comparison among GeoDAR, ICOLD WRD, and GRanD by reservoir catchment area and reservoir area. (a) 

Frequency (count) distributions by reservoir catchment area. Statistics were based on 40 bins between the minimum and 

maximum catchment areas (i.e., 1 to 4,040,000 km2). (b) Frequency distribution by reservoir area. Statistics are based on 80 710 

bins between the minimum and maximum reservoir areas (i.e., 0.001 to 66,866.7 km2). All bins are of equal size on a 

logarithmic scale. Considering that catchment areas are often missing in WRD, a smaller bin size 40 was used to generate 

smoother distribution curves. Catchment areas were acquired from data attribute values. When a dam is in both GRanD and 

WRD, the value in GRanD took precedence. Reservoir areas for GeoDAR and GRanD were based on their reservoir 

polygons, and the small proportions of dams missing reservoir polygons were not counted in distribution curves. Reservoirs 715 

areas for ICOLD WRD were based on reservoir polygons if available in GeoDAR or from the WRD attribute if not. 

Although the current version of GeoDAR does not include reservoir catchment boundaries, it does provide reservoir 

polygons for 20,214 or 85% of the georeferenced dam points. As reported in Section 3.1.2, the remaining 15% of the dam 

points without reservoir polygons, if inferred from their available attribute values, yield a reservoir area that is only 2% of 
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the total reservoir area of all GeoDAR dams. For this reason, we focus on the retrieved reservoir polygons for comparing 720 

how GeoDAR v1.1 represents the reservoir areas in the entire ICOLD WRD. Among the 20,214 polygons, 19,122 (95%) are 

associated with the georeferenced WRD dams. These retrieved WRD reservoirs have a total area of 466 thousand km2, 

accounting for 90% of the cumulative reservoir area in WRD (Table 9). After supplementation of the other 1092 polygons 

from GRanD, the total reservoir area reached 492 thousand km2, equivalent to 95% of the cumulative reservoir area in WRD. 

Like other attributes, the values of reservoir area are not always available in all WRD records, so our reported coverage 725 

percentages are theoretically overestimated. However, if a WRD record is missing its area attribute value but has a retrieved 

reservoir polygon, we used the area of the reservoir polygon as the de facto reservoir area in calculating WRD statistics, and 

the other WRD records still missing reservoir areas probably contribute a miniscule fraction of the aggregated area. 

Therefore, we consider our comparison to be overall reasonable. Keeping this limitation in mind, we showed in the 

distribution curves (Fig. 11b) that the number of GeoDAR reservoir polygons accounts for 64% of all WRD records that 730 

have reservoir area values (either documented or de facto), and consistent with the distributions of other attributes, higher 

coverages for reservoir area tend to occur for larger reservoirs. For example, GeoDAR retrieved 7828 reservoirs larger than 1 

km2, which account for 76% of those in WRD. The coverage increases to 88% for reservoirs larger than 10 km2 although the 

reservoir polygon number decreases to 2522. 

3.4.2 Improved spatial details over GRanD 735 

Enhancing the spatial detail of existing global inventories of dams and reservoirs, such as GRanD, is another motivation of 

producing GeoDAR. While GRanD emphasized all dams and reservoirs larger than 100 mcm (or 0.1 km3), GeoDAR aimed 

to georeference all records in WRD which, by definitions, have a minimum storage capacity of 3 mcm or smaller if the dam 

is higher than 15 m (see Section 1). This reduced storage threshold entailed a substantial increase of the dam quantity in 

GeoDAR. As compared in Table 9, GeoDAR v1.0, which was generated independently from GRanD, already exceeds the 740 

dam quantity of GRanD (7320) by 188%, and accounts for more than 90% of the total reservoir storage capacity in GRanD 

(6881 Gt). The harmonization with GRanD further expanded GeoDAR by another 2629 dam points including 1518 newly 

georeferenced from WRD. As a result, the WRD portion of GeoDAR v1.1 (with 22,569 dams) matches the full storage 

capacity of GRanD but is triple GRanD’s dam count. This comparison suggests that the improvement of GeDAR is mainly 

manifested as the increased dam locations or spatial details, rather than reservoir storage capacity. With the inclusion of the 745 

remaining 1111 large dams from GRanD, the number of dams in GeoDAR v1.1 (23,680) reaches 323% of that in GRanD, 

with a total reservoir storage capacity (7486 Gt) also exceeding 9% of that in GRanD. 
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Figure 12. Global distribution of reservoir storage capacities of georeferenced dams. (a) GRanD v1.3 and (b) GeoDAR v1.1. 

Shown on the maps are 7312 out of the 7320 dams in GRanD v1.3 and 23,082 out of the 23,680 dams in GeoDAR v1.1. The 750 

fractional proportions of the dams not shown have no documented or estimated reservoir storage capacities.  
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The improved spatial detail in GeoDAR is also revealed by the distribution of individual reservoir storage capacities 

worldwide (Fig. 12). Since GeoDAR v1.1 has absorbed GRanD v1.3, the global patterns for capacious reservoirs are overall 

similar between the two datasets. What is noticeably different are the proliferated spatial densities of thousands of smaller 

reservoirs, particularly those beyond the main focus of GRanD (such as smaller than 100 mcm). The substantial increase of 755 

smaller dams and reservoirs is corroborated by the distribution curves in Fig. 9a, where the mode storage capacity (i.e., the 

capacity corresponding to the peak frequency) shifted from about 100 mcm in GRanD to about 3–5 mcm in GeoDAR (both 

v1.0 and v1.1). The area between the distribution curves is largely explained by the addition of ~15,300 dams smaller than 

100 mcm in GeoDAR v1.1 (Fig. 9a), which correspond to a total storage increase of 75Gt or 58% (Fig. 9b). These smaller 

dams (<100 mcm) comprise 84% of GeoDAR v1.1 in number, in comparison to only 54% of GRanD.  760 

As visualized in Fig. 12, increases of reservoir population and density are seen across the continents such as North America, 

Europe, East and South Asia, the Middle East, southern Africa, and South America. Some of the hotspots, not surprisingly, 

also concur with the most economically active and energy-demanding regions, such as China, Europe, India, and the US 

where details are further enlarged in Fig. 13. It is important to note that the added reservoirs in GeoDAR still comply with 

ICOLD’s definition of “large dams”. Although their aggregated storage is limited, these relatively small reservoirs are 765 

geographically widespread, meaning that they are locally significant for filling service gaps between more sporadic larger 

dams. Examples include hundreds of smaller dams and reservoirs that provide irrigation from southern Europe (Fig. 13b) to 

north-western and central India (Fig. 13c), hydropower and water usage in central and southern China (Fig. 13a), and flood 

controls across the Mississippi River Basin and southern Texas in the US (Fig. 13d). The sheer number of these added 

smaller dams and reservoirs accentuate the benefits of an improved knowledge of their spatial locations, such as what 770 

GeoDAR offers, for strategizing water and energy managements and assessing fragmentation of the river ecosystems 

(Belletti et al., 2020; Grill et al., 2019).  
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Figure 13. Regional distributions of reservoir storage capacities in GRanD v1.3 and GeoDAR v1.1. (a) China and its 775 

surrounding East and Southeast Asia. (b) Europe. (c) India and its surrounding South Asia. (d) US and its surrounding North 

America. Graduated symbols for GeoDAR (blue bubbles) are superimposed by symbols for GRanD (red bubbles).  

To assist regional applications, we further aggregated the improvements of GeoDAR over GRanD into national scales. As 

shown in Fig. 14, GeoDAR’s improvements in either dam count or reservoir storage capacity pervade more than 100 

countries which occupy about 70% of the continental landmass (excluding Greenland and Antarctica). The increase of dam 780 
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count occurs in 122 out of the 154 GeoDAR countries (Fig. 14a). These 122 countries include 17 countries without GRanD 

records at all (e.g., such as Mauritius, United Arab Emirates, Yemen, and Bhutan), and the other 105 countries comprise 

77% of the 137 countries with GRanD records. There are slightly fewer countries with a confirmed increase of reservoir 

storage capacity (Fig. 14b) because some of the added WRD records are missing storage capacity values. The number of 

these countries is 111, including 13 without GRanD records at all.  785 

Although GeoDAR’s improvements are widespread, the improvement levels are not geographically uniform (Fig. 14). 

Globally speaking, the spatial patterns of number and capacity increases are overall consistent, with the most prominent 

improvements in large or industrialized nations (e.g., US, China, Brazil, India, and European countries) and less impressive 

increases in smaller, drier, and/or less developed nations (e.g., part of Africa and South America). This is reasonable as 

bigger and/or more developed nations usually possess a larger quantity of dam infrastructures and thus a greater potential for 790 

GeoDAR to improve. However, this pattern also reflects the disparities of several factors, such as information sharing among 

the ICOLD members (not all nations contributed equally), the accessibility of regional registers for geo-matching, and 

geocoding challenges for different countries. The top five countries in terms of dam count increase are the US (an increase of 

5900 or 307%), China (4413 or 480%), South Africa (627 or 233%), India (602 or 181%), and Brazil (575 or 283%). These 

five countries cover nearly three quarters of the global dam count increase (16,360). Similarly, the top five countries in terms 795 

of storage capacity increase are the US (150 km3 or 20%), Canada (131 km3 or 15%), Brazil (66 km3 or 12%), China (45 km3 

or 7%), and India (22 km3 or 8%), which together comprise about 80% of the global capacity improvement (605 km3). 

While the patterns of dam count and capacity improvements are similar, certain regions with limited increases in dam count, 

such as the Middle East, Southeast Asia, and southern Africa, show more pronounced improvements in storage capacity. 

This contrast indicates that, in addition to smaller dams and reservoirs (e.g., <100 mcm), GeoDAR also supplemented 800 

GRanD by including more capacious reservoirs. Examples are Dau Tieng Dam in Vietnam (storage capacity 1580 mcm; 

location 11.323° N, 106.341° E), San Roque Dam in the Philippines (990 mcm; 16.147° N, 120.685° E), Mrica Dam in 

Indonesia (193 mcm; 7.392° S, 109.605° E), Marib Dam in Yemen (398 mcm; 15.396° N, 45.244° E), and the recently 

completed Lauca Dam in Angola (5482 mcm; 9.739° S, 15.127° E). Different from GRanD, GeoDAR also inventoried some 

large hydroelectric projects that are under construction or consideration. Examples are Diamer-Bhasha Dam in Pakistan 805 

(expected 10,000 mcm; 35.521° N, 73.739° E), Bakhtiari Dam in Iran (4845 mcm; 32.958° N, 48.761° E), and Myitsone 

Dam in Myanmar (13282 mcm; 25.691° N, 97.516° E).  
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Figure 14. Country-level improvements in GeoDAR v1.1 over GRanD v1.3. (a) Increase of dam count and (b) increase of 

total reservoir storage capacity for each country or territory. Aggregated statistics for dam count and storage capacity were 810 

also compared for each continent. For convenience of comparison, both statistics were displayed on Panel a.  
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By further aggregating national statistics to each continent (Fig. 14a), the result echoes that GeoDAR’s major improvement 

lies on the quantity or spatial details of the dams, rather than their total reservoir storage capacity. However, this should not 

overshadow the fact that improvements of both dam count and storage capacity do exist in all continents. As summarized in 

Fig. 14a, the continental improvement ascends from 135 more dams with a 4 km3 total capacity in Oceania, to a scale of 815 

5000–6000 more dams with a 200–300 km3 capacity in North America or Asia. Unfortunately, because the total storage 

capacity is disproportionally dominated by the largest reservoirs and GRanD has already included most of them, the added 

storage capacity by GeoDAR relative to what has existed in GRanD appears limited and descends from 10–17% in North 

America and Asia, 9% in South America, to only 1–4 % in the other continents. By contrast, GeoDAR’s dam quantity ranges 

from being almost double that of GRanD in Oceania and South America, to being triple to quadruple in the other continents. 820 

A derivative benefit of the increased dam quantity is a more complete representation of the reservoir catchment areas, which 

is critical to improving discharge estimates. As revealed by the distribution curves in Fig. 11a, GeoDAR improved GRanD in 

the inclusion of reservoir catchment areas from two aspects. First, the exceedance of the number of reservoir catchments is 

almost unanimous on all area levels. This corresponds to a total increase of the regulated catchment area by 31,110 km2 or 

27% (Table 9). Second, the increase of reservoir catchments is skewed towards smaller catchments, signifying a more 825 

realistic inventory of human water regulations in the basins of lower stream orders or closer to stream headwaters. As shown 

in the distribution curves (Fig. 11a), the average increasing rate is augmented from about 28% for catchments larger than 

1000 km2, 75% for catchments between 10 and 1000 km2, to more than 500% for those smaller than 10 km2. The mode of 

catchment areas decreases from about 200–400 km2 in GRanD to 30–100 km2 in GeoDAR, with the latter much closer to the 

mode of the entire ICOLD WRD (15–50 km2). As a result, the number of dams with a catchment size smaller than 25 km2, 830 

for example, which is the channelization threshold for the high-resolution MERIT Basins hydrography dataset (Lin et al., 

2019; Yamazaki et al., 2017)), is 2938 or 23% in GeoDAR in comparison to only 571 or 8% in GRanD. These small-

catchment dams, once integrated into river networks, may substantially improve the performance of routing models. 

Consistent with our comparison with ICOLD WRD (Section 3.4.1), these statistics are only based on the records with valid 

catchment areas. Considering that missing values more likely occur to dams with smaller catchments, our reported 835 

improvement could be theoretically conservative.  

The increased dam count in GeoDAR also enabled the retrieval of another 12,894 reservoir polygons from the high-

resolution HydroLAKES dataset and the finer UCLA Circa-2015 Lake Inventory (Fig. 7). These added reservoir polygons 

are mostly small, with a median size of 0.2 km2 in comparison to 4.3 km3 in GRanD. They aggregate to a total area of 17,876 

km2, a scale comparable to 30 Lake Meads. Although this area increase may appear substantial, it only expanded the global 840 

reservoir area in GRanD by a marginal proportion of 4%. Similar to the pattern of storage capacities, reservoir areas follow a 

quasi-Pareto distribution, meaning that smaller reservoirs tend to dominate the population (or number) whereas larger 

reservoirs dominate the area and storage. This explains why the increase of relative area is small, but the increase of absolute 
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quantity is double that of the entire reservoir polygons in GRanD. For example, about 96% of the total reservoir area in 

GeoDAR comes from only 12% of the reservoir polygons larger than 10 km2, and 92% of these large reservoirs are already 845 

included by GRanD (Fig. 11b). This pattern again suggests that the core value of GeoDAR is not to augment the global scale 

of reservoir area or storage, but to amplify the local details of smaller dams and reservoirs. Owing to the added details, the 

mode of reservoir area is on the order of 1–10 km2 in GRanD but was refined by one order of magnitude to 0.1–1 km2 in 

GeoDAR. Similarly, the number of reservoir polygons smaller than 1 km2 is 1170 or only 16% in GRanD and has increased 

to 11,957 or 59% in GeoDAR. As discussed in Section 3.1, these thousands of added reservoir polygons are concentrated on 850 

the populated middle and lower latitudes, and contribute to an enhanced base map of both locations and extents of human 

water impoundments. Together with remote sensing observations such as satellite altimeters and spectrometers, this 

enhanced base map will facilitate a more comprehensive monitoring of reservoir water budget variations, and thus an 

improved understanding of how human footprints alter and fragment the global river systems.  

The detailed reservoir base map of GeoDAR, with the a priori attribute of reservoir purpose, can also enhance our 855 

understanding of reservoir operation rules. If we group the global dams by their documented main purpose, we observe in 

Fig. 15 that GeoDAR improved GRanD unanimously in both dam count and storage capacity for all main purposes (Fig. 15). 

For the same reason as explained above (i.e., the added reservoirs are small), the increases of dam count appear more 

prominent than those of storage capacity, and the increases of storage capacity from GRanD to GeoDAR are overall more 

evident than those from GeoDAR to ICOLD WRD. The exception is the dams with “others” or “unknown” purposes whose 860 

total storage capacity in GeoDAR is lower. This is because when GRanD and WRD records conflict with each other in the 

GeoDAR harmonization process, the attribute values in GRanD took precedence only if they are available or valid (“others” 

or “unknown” was considered as invalid reservoir purpose). This harmonization scheme, as also used for the calculation of 

other attribute statistics, ensured the optimal integration of all available attribute data. The improved spatial inventories for 

all reservoir purposes have important implications for generalizing reservoir operation rules. Assuming that the reservoir 865 

operation rules vary by purpose, the accuracy of our generalized operation rules, such as from satellite-observed water 

budget variations, will improve as the number of observed reservoirs increases. This is especially true if the observed 

reservoirs also cover wider variations of sizes, storage capacities, and catchment areas.  
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 870 

Figure 15. Comparison among GRanD v1.3, GeoDAR v1.1, and ICOLD WRD by dam/reservoir purpose. (a) Dam counts 

and (b) total reservoir storage capacities for each main purpose. Dam purposes are based on attribute values provided in 

WRD and GRanD. For a dam with multiple purposes, its “main purpose” was considered as the one with the highest order of 

priority. The main purpose in GRanD took precedence if it differs from that in WRD.  

3.4.3 Spatially complementary with GOODD 875 

The recently published GOODD (V1) dataset (Mulligan et al., 2020) holds 38,667 dam points in the world, which were 

consistently digitized by scanning through Google Earth imagery with supports of regional inventories and the Shuttle Radar 

Topography Mission Water Body Dataset (SWBD, 2005). Despite lacking essential attributes, GOODD is thus far the most 

comprehensive global inventory of dam locations and catchments. The digitization was performed during 2007 to 2011 and 

was later updated in 2016. This means that reservoirs postdating 2016 were not yet included in the dataset. The completeness 880 

and accuracy of GOODD also depend on the sizes of the dams or reservoirs. As the authors described, the resolution and 

quality of available Google Earth imagery during the digitization period were low in some parts of the world (such as 
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China), and an experiment in the US showed that detectable dams and reservoirs from low resolution imagery (e.g., Landsat 

Geocover 2000) may require the reservoir length greater than 500 m and the dam width greater than 150 m. These minimum 

size criteria do not necessarily overlap with those of ICOLD WRD which instead emphasize the reservoir storage capacity 885 

and dam height (see Section 1).  

Because of the digitizing limitations and criterion difference, the dam points in GeoDAR are spatially complementary to, 

rather than completely duplicated by, those in GOODD across many regions. Figure 16 identified four examples in Cerrado 

Brazil, northern China, southwestern France, and northern Pakistan, where a large proportion of the GeoDAR dams were not 

digitized by GOODD. Some of the dams that only appear in GeoDAR also comply with the minimum size criteria of 890 

GOODD, and examples are those enlarged in the right panels except the Duber Khwar Dam in Pakistan (35.119° N, 72.927° 

E; Fig. 16j) which was completed more recently in 2014. Since the area of the Duber Khwar Reservoir (about 0.05 km2) is 

smaller than the resolution of HydroLAKES (0.1 km2) and the dam completion year overlaps with the image acquisition 

period of the UCLA Circa-2015 Lake Inventory (from May 2013 to August 2015 (Sheng et al., 2016)), GeoDAR 

georeferenced the dam point but did not successfully retrieve the reservoir polygon.  895 

To approximate how GeoDAR and GOODD complement each other globally, we intersected both dam datasets with the 30-

m-resolution UCLA Circa-2015 Lake Inventory. We noticed that some of the points in GOODD, particularly in regions like 

China, India, and Brazil, exhibit substantial geographic offsets from the dams or reservoirs observed in the Google Earth 

imagery. Through a pilot experiment, we applied a 1-km tolerance when intersecting the UCLA lake inventory with 

GOODD, and kept a 500-m tolerance as used in Section 2.6 for intersecting the lake inventory with GeoDAR. The result 900 

shows that among the 57,000 or so water bodies that intersect either datasets, 82% intersect with GOODD and the other 18% 

with GeoDAR alone. These statistics imply that GeoDAR may have an ability to expand the number of dams in GOODD by 

about 21% (i.e., 18% divided by 82%). It is important to note that since we applied a larger tolerance for GOODD, this 

estimated expansion by GeoDAR is likely conservative (considering that the number of GOODD-intersecting reservoirs may 

be overestimated). If a 500-m tolerance is used for both intersections, the expansion by GeoDAR will increase to 42%. In 905 

addition to the expanded spatial coverage, GeoDAR indexed each georeferenced dam point to a WRD and/or GRanD record 

and thus enabled access to multiple attributes, whereas GOODD carries no attribute information except the delineated 

reservoir catchments. These regional and global comparisons suggest that, even just with the geometric dam points, 

GeoDAR is not a simple replication of GOODD, but instead complements GOODD for an improved spatial coverage of 

global dams. 910 
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Figure 16. Comparisons between GRanD v1.3, GOODD V1, and GeoDAR v1.1 in selected regions of the world. (a)-(b) 

Cerrado, Brazil (Mato Grasso State). (c)-(e) Northern China (Shandong Province). (f)-(h) Southwestern France (Aquitaine 

and Midi-Pyrenees). (i)-(k) Northern Pakistan (northern highlands and foothills). GRanD points (red) are placed on top of 

GOODD (green) which is placed on top of GeoDAR (yellow). Background image source: Esri imagery base map. 915 
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4 Data Availability 

GeoDAR v1.0 (dam points) and v1.1 (both dam points and reservoir polygons) are available for download from the figshare 

repository https://doi.org/10.6084/m9.figshare.13670527. The dam points are stored in both csv and shapefile formats, and 

the reservoir polygons are provided in shapefile. Their attributes and values are described in Table 8 as well as in the 

repository website. The data usage information is described in Section 3.3. Other citation courtesy and disclaimer 920 

information are given in the Disclaimer section and the repository website. All released datasets and information are 

available under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license 

(https://creativecommons.org/licenses/by/4.0). Users who would like to link GeoDAR records to the proprietary WRD 

attributes they have purchased in advance from ICOLD should contact the corresponding author.  

5 Conclusions and Outlooks 925 

We have produced a comprehensive and spatially resolved dam and reservoir dataset, GeoDAR, which complementarily 

improved the existing global inventories of large dams. We demonstrated that the production of GeoDAR is not a direct 

compilation or collation of existing dam datasets. Instead, it involved a first-known effort to georeference ICOLD WRD. 

This was jointly enabled by geo-matching (or table-associating) multi-source regional registers and geocoding descriptive 

attributes through the Google Maps API. This georeferencing effort resulted in GeoDAR v1.0 which contains 21,051 930 

spatially resolved dam points, each associated with a WRD record, with an overall accuracy of 96%. Each of the 

georeferenced records was also labelled with a QA score, providing users a reference to the qualities of individual dam 

locations. Our georeferencing process and accuracy validation, as we have elaborated in substantive detail, have important 

methodological values for future expansions of spatial dam inventories using similar approaches, such as Geo-Wiki and 

OpenStreetMap.  935 

To further ensure the optimal inclusion of the world’s largest dams, we harmonized the georeferenced WRD (or GeoDAR 

v1.0) carefully with GRanD v1.3. Using the harmonized dam points as spatial identifiers, most of their reservoir boundaries 

were then retrieved from high-resolution water body datasets. This ICOLD-GRanD harmonization and the subsequent 

reservoir retrieval resulted in GeoDAR v1.1, our end product, which holds 23,680 dam points (including 22,569 linked to 

WRD) and 20,214 reservoir polygons. This product spatially resolved 40% of the entire ICOLD WRD by dam count and 940 

more than 90% by reservoir storage capacity. Since most of the world’s largest reservoirs (e.g., >0.1 km3) are already 

included in GRanD, GeoDAR adds limited improvements (by 4–27%) to the total reservoir area, storage capacity, and 

catchment area. However, by including many smaller dams particularly in lower and middle latitudes, GeoDAR is triple the 

size of GRanD in terms of dam and reservoir quantity. For this reason, one of the major improvements of GeoDAR is its 

unparalleled ability to capture relatively small dams, or in other words, to enhance the spatial detail of global dam and 945 

reservoir distributions.  

https://doi.org/10.5194/essd-2021-58

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 24 March 2021
c© Author(s) 2021. CC BY 4.0 License.



45 

 

Besides an enhanced spatial detail, another unique value of GeoDAR is its capability of bridging the locations of dams to a 

broad suite of attributes that are essential to scientific applications. A standing dilemma of existing global dam datasets is the 

divergence between the focus on dam quantity or spatial detail and the provision of detailed attributes for a limited dam 

quantity. This dilemma was partially ameliorated by GeoDAR because its georeferenced dams and reservoirs were explicitly 950 

indexed to WRD and/or GRanD records where many attributes are available. Since the original ICOLD WRD is not 

georeferenced, our perception was that the task of georeferencing WRD to enable a spatially explicit application of the 

attribute information, even at regional scales, often fell on individual users. To avoid the duplication of efforts and to 

facilitate scientific applications, we performed this comprehensive georeferencing on the entirety of ICOLD WRD as 

thoroughly as possible, and hereby released the resultant dam coordinates and reservoir polygons to the public as part of 955 

GeoDAR. We would like to reiterate the disclaimer that GeoDAR does not directly contain, and neither do we intend to 

release, the original WRD attribute data which are proprietary to ICOLD. In other words, the association between GeoDAR 

IDs and WRD IDs exist but were purposefully encrypted. However, if individual users need GeoDAR records to be linked to 

the WRD attributes that they already purchased from ICOLD, we can be contacted and, we may provide this information on 

a case-by-case basis, given that the users agree not to release the decryption key or the proprietary WRD attributes.  960 

We envision that GeoDAR, with its enhanced spatial detail and extended accessibility to essential attributes, will benefit a 

wide spectrum of disciplines and applications. It is worth noting that although most dams in GeoDAR are smaller than those 

in GRanD or AQUASTAT, they are still compliant with ICOLD’s size criteria which exclude countless tiny on-farm 

reservoirs and water storage tanks. Nevertheless, we have suggested from regional examples that GeoDAR partially 

complements some of the most extensive global dam inventories such as GOODD, despite GOODD owning a larger number 965 

of dams. In this sense, even just with the 24,000 or so geometric dam points, GeoDAR contributes yet another fundamental 

extension to global water infrastructure databases. If these dam points are rectified to high-resolution hydrographic networks 

(such as MERIT Hydro (Lin et al., 2021; Yamazaki et al., 2019)), GeoDAR, together with other existing dam and barrier 

datasets, can help refine our understanding of how human water infrastructure fragmented global rivers and their ecosystems 

(Belletti et al., 2020; Grill et al., 2019; Kornei, 2020), especially with a more exhaustive inclusion of smaller and/or 970 

headwater catchments.  

Alongside the detailed dam points, GeoDAR’s reservoir boundaries provide thus far the most comprehensive global base 

maps for assessing reservoir dynamics and the impacts of human water regulation. In combination with the expanding 

constellation of satellite sensors (e.g., ICESat-2, Sentinel-6, and the forthcoming SWOT), this high-resolution base map will, 

for instance, enable a more complete and accurate monitoring of water storage variation and surface evaporation in global 975 

reservoirs (Biancamaria et al., 2016; Chen et al., 2021; Cretaux et al., 2016; Zhao and Gao, 2019a). Tracking the 

spatiotemporal balance between reservoir water storage and evaporative loss will help strategize regional water 

managements under a warming climate (Cretaux et al., 2015). Since our knowledge and understanding improves as 
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observations increase, the observed water storage dynamics for an increased quantity of reservoirs will inevitably entail a 

more realistic generalization of the reservoir operation rules. This is particularly true if the attribute information such as 980 

reservoir purpose and storage capacity are also utilized. Considering that small but widespread reservoirs have a strong 

cumulative impact on discharge (Habets et al., 2018; Lin et al., 2019), the improved operation rules and the fine details of 

reservoir storage changes will benefit discharge estimations from hydrological models. From another perspective, 

GeoDAR’s reservoir polygons can also help refine surface water typology, either by directly using them to mask artificial 

impoundments from natural lakes, or by expanding the training pool to enhance machine learning algorithms so that 985 

additional reservoirs can be detected (Fang et al., 2019). A refined water typology map will, in turn, assist other analysis 

tools in improving our assessments of how human footprints alter surface hydrology and its related biodiversity and 

ecosystem health. 

6 Code availability 

Python scripts for geo-matching, geocoding, and reservoir assignment are publicly available at https://github.com/jida-990 

wang/georeferencing-ICOLD-dams-and-reservoirs. We request users who adapt or use the scripts to cite Wang et al. (2021). 
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9 Disclaimer 

GeoDAR v1.0 and v1.1 contain knowledge derived from ICOLD WRD (https://www.icold-

cigb.org/GB/world_register/acknowledgements_wrd.asp) but release no original values of the proprietary WRD attributes. 

The production and dissemination of GeoDAR (spatial features) abide by ICOLD’s legal policies (https://www.icold-

cigb.org/GB/legal.asp) and were approved by the Central Office of ICOLD. GeoDAR v1.0 represents an initial effort of 1010 

georeferencing WRD at a global scale, and the resultant dam distribution may be geographically skewed and thus may not 

reflect the distribution of all WRD records. The authors are not responsible for any consequence arising from this limitation. 

GeoDAR v1.1 absorbed the spatial features (i.e., dam point coordinates and reservoir polygons) in GRanD v1.3. To 

acknowledge the originality of GRanD, we request that a user cites the reference of GRanD (Lehner et al., 2011) under the 

following two conditions: a) if a user uses the complete collection or a subset of GeoDAR v1.1 that contains spatial features 1015 

from both GeoDAR v1.0 and GRanD, the user should cite this paper (Wang et al., 2021) and Lehner et al. (2011) 

concurrently; b) if a user uses a subset of GeoDAR v1.1 that only includes spatial features from GRanD and meanwhile the 

user does not use the WRD attribute data associated with the GRanD features, the user should only cite Lehner et al. (2011). 

The source of each spatial feature in GeoDAR v1.1 has been specified in the attribute “pnt_src” for dam points and the 

attribute “plg_src” for reservoir polygons (see Table 8). For any questions about data citation, users are recommended to 1020 

contact the corresponding author JW. Authors of this paper claim no responsibility or liability for any consequences related 

to the use, citation, or dissemination of GeoDAR. 
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